// -*- mode: cpp; mode: fold -*-
// Description								/*{{{*/
// $Id: md5.cc,v 1.12 2001/05/13 05:15:03 jgg Exp $
/* ######################################################################
   
   MD5Sum - MD5 Message Digest Algorithm.

   This code implements the MD5 message-digest algorithm. The algorithm is 
   due to Ron Rivest.  This code was written by Colin Plumb in 1993, no 
   copyright is claimed. This code is in the public domain; do with it what 
   you wish.
 
   Equivalent code is available from RSA Data Security, Inc. This code has 
   been tested against that, and is equivalent, except that you don't need to 
   include two pages of legalese with every copy.

   To compute the message digest of a chunk of bytes, instantiate the class,
   and repeatedly call one of the Add() members. When finished the Result 
   method will return the Hash and finalize the value.
   
   Changed so as no longer to depend on Colin Plumb's `usual.h' header
   definitions; now uses stuff from dpkg's config.h.
    - Ian Jackson <ijackson@nyx.cs.du.edu>.
   
   Changed into a C++ interface and made work with APT's config.h.
    - Jason Gunthorpe <jgg@gpu.srv.ualberta.ca>
   
   Still in the public domain.

   The classes use arrays of char that are a specific size. We cast those
   arrays to uint8_t's and go from there. This allows us to advoid using
   the uncommon inttypes.h in a public header or internally newing memory.
   In theory if C9x becomes nicely accepted
   
   ##################################################################### */
									/*}}}*/
// Include Files							/*{{{*/
#include <config.h>

#include <apt-pkg/md5.h>

#include <stdint.h>
#include <string.h>
									/*}}}*/

// byteSwap - Swap bytes in a buffer					/*{{{*/
// ---------------------------------------------------------------------
/* Swap n 32 bit longs in given buffer */
#ifdef WORDS_BIGENDIAN
static void byteSwap(uint32_t *buf, unsigned words)
{
   uint8_t *p = (uint8_t *)buf;
   
   do 
   {
      *buf++ = (uint32_t)((unsigned)p[3] << 8 | p[2]) << 16 |
	 ((unsigned)p[1] << 8 | p[0]);
      p += 4;
   } while (--words);
}
#else
#define byteSwap(buf,words)
#endif
									/*}}}*/
// MD5Transform - Alters an existing MD5 hash				/*{{{*/
// ---------------------------------------------------------------------
/* The core of the MD5 algorithm, this alters an existing MD5 hash to
   reflect the addition of 16 longwords of new data. Add blocks
   the data and converts bytes into longwords for this routine. */

// The four core functions - F1 is optimized somewhat
// #define F1(x, y, z) (x & y | ~x & z)
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

// This is the central step in the MD5 algorithm.
#define MD5STEP(f,w,x,y,z,in,s) \
	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)

static void MD5Transform(uint32_t buf[4], uint32_t const in[16])
{
   register uint32_t a, b, c, d;
   
   a = buf[0];
   b = buf[1];
   c = buf[2];
   d = buf[3];
   
   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
   
   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
   
   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
   
   buf[0] += a;
   buf[1] += b;
   buf[2] += c;
   buf[3] += d;
}
									/*}}}*/
// MD5Summation::MD5Summation - Initialize the summer			/*{{{*/
// ---------------------------------------------------------------------
/* This assigns the deep magic initial values */
MD5Summation::MD5Summation()
{
   uint32_t *buf = (uint32_t *)Buf;
   uint32_t *bytes = (uint32_t *)Bytes;
   
   buf[0] = 0x67452301;
   buf[1] = 0xefcdab89;
   buf[2] = 0x98badcfe;
   buf[3] = 0x10325476;
   
   bytes[0] = 0;
   bytes[1] = 0;
   Done = false;
}
									/*}}}*/
// MD5Summation::Add - 'Add' a data set to the hash			/*{{{*/
// ---------------------------------------------------------------------
/* */
bool MD5Summation::Add(const unsigned char *data,unsigned long long len)
{
   if (Done == true)
      return false;

   uint32_t *buf = (uint32_t *)Buf;
   uint32_t *bytes = (uint32_t *)Bytes;
   uint32_t *in = (uint32_t *)In;

   // Update byte count and carry (this could be done with a long long?)
   uint32_t t = bytes[0];
   if ((bytes[0] = t + len) < t)
      bytes[1]++;	

   // Space available (at least 1)
   t = 64 - (t & 0x3f);	
   if (t > len) 
   {
      memcpy((unsigned char *)in + 64 - t,data,len);
      return true;
   }

   // First chunk is an odd size
   memcpy((unsigned char *)in + 64 - t,data,t);
   byteSwap(in, 16);
   MD5Transform(buf,in);
   data += t;
   len -= t;
   
   // Process data in 64-byte chunks
   while (len >= 64)
   {
      memcpy(in,data,64);
      byteSwap(in,16);
      MD5Transform(buf,in);
      data += 64;
      len -= 64;
   }

   // Handle any remaining bytes of data.
   memcpy(in,data,len);

   return true;   
}
									/*}}}*/
// MD5Summation::Result - Returns the value of the sum			/*{{{*/
// ---------------------------------------------------------------------
/* Because this must add in the last bytes of the series it prevents anyone
   from calling add after. */
MD5SumValue MD5Summation::Result()
{
   uint32_t *buf = (uint32_t *)Buf;
   uint32_t *bytes = (uint32_t *)Bytes;
   uint32_t *in = (uint32_t *)In;
   
   if (Done == false)
   {
      // Number of bytes in In
      int count = bytes[0] & 0x3f;	
      unsigned char *p = (unsigned char *)in + count;
      
      // Set the first char of padding to 0x80.  There is always room.
      *p++ = 0x80;
      
      // Bytes of padding needed to make 56 bytes (-8..55)
      count = 56 - 1 - count;
      
      // Padding forces an extra block 
      if (count < 0) 
      {
	 memset(p,0,count + 8);
	 byteSwap(in, 16);
	 MD5Transform(buf,in);
	 p = (unsigned char *)in;
	 count = 56;
      }
      
      memset(p, 0, count);
      byteSwap(in, 14);
      
      // Append length in bits and transform
      in[14] = bytes[0] << 3;
      in[15] = bytes[1] << 3 | bytes[0] >> 29;
      MD5Transform(buf,in);   
      byteSwap(buf,4);
      Done = true;
   }
   
   MD5SumValue V;
   V.Set((unsigned char *)buf);
   return V;
}
									/*}}}*/