// -*- mode: cpp; mode: fold -*- // Description /*{{{*/ // $Id: sha1.cc,v 1.3 2001/05/13 05:15:03 jgg Exp $ /* ###################################################################### SHA1 - SHA-1 Secure Hash Algorithm. This file is a Public Domain wrapper for the Public Domain SHA1 calculation code that is at it's end. The algorithm was originally implemented by Steve Reid and later modified by James H. Brown . Modifications for APT were done by Alfredo K. Kojima and Jason Gunthorpe. Still in the public domain. Test Vectors (from FIPS PUB 180-1) "abc" A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 A million repetitions of "a" 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F ##################################################################### */ /*}}} */ // Include Files /*{{{*/ #include #include #include #include #include #include #include /*}}}*/ // SHA1Transform - Alters an existing SHA-1 hash /*{{{*/ // --------------------------------------------------------------------- /* The core of the SHA-1 algorithm. This alters an existing SHA-1 hash to reflect the addition of 16 longwords of new data. Other routines convert incoming stream data into 16 long word chunks for this routine */ #define rol(value,bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #ifndef WORDS_BIGENDIAN #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \ |(rol(block->l[i],8)&0x00FF00FF)) #else #define blk0(i) block->l[i] #endif #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) /* (R0+R1),R2,R3,R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); static void SHA1Transform(uint32_t state[5],uint8_t const buffer[64]) { uint32_t a,b,c,d,e; typedef union { uint8_t c[64]; uint32_t l[16]; } CHAR64LONG16; CHAR64LONG16 *block; uint8_t workspace[64]; block = (CHAR64LONG16 *)workspace; memcpy(block,buffer,sizeof(workspace)); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e,0); R0(e,a,b,c,d,1); R0(d,e,a,b,c,2); R0(c,d,e,a,b,3); R0(b,c,d,e,a,4); R0(a,b,c,d,e,5); R0(e,a,b,c,d,6); R0(d,e,a,b,c,7); R0(c,d,e,a,b,8); R0(b,c,d,e,a,9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } /*}}}*/ // SHA1SumValue::SHA1SumValue - Constructs the summation from a string /*{{{*/ // --------------------------------------------------------------------- /* The string form of a SHA1 is a 40 character hex number */ SHA1SumValue::SHA1SumValue(string Str) { memset(Sum,0,sizeof(Sum)); Set(Str); } /*}}} */ // SHA1SumValue::SHA1SumValue - Default constructor /*{{{*/ // --------------------------------------------------------------------- /* Sets the value to 0 */ SHA1SumValue::SHA1SumValue() { memset(Sum,0,sizeof(Sum)); } /*}}} */ // SHA1SumValue::Set - Set the sum from a string /*{{{*/ // --------------------------------------------------------------------- /* Converts the hex string into a set of chars */ bool SHA1SumValue::Set(string Str) { return Hex2Num(Str,Sum,sizeof(Sum)); } /*}}} */ // SHA1SumValue::Value - Convert the number into a string /*{{{*/ // --------------------------------------------------------------------- /* Converts the set of chars into a hex string in lower case */ string SHA1SumValue::Value() const { char Conv[16] = { '0','1','2','3','4','5','6','7','8','9','a','b', 'c','d','e','f' }; char Result[41]; Result[40] = 0; // Convert each char into two letters int J = 0; int I = 0; for (; I != 40; J++,I += 2) { Result[I] = Conv[Sum[J] >> 4]; Result[I + 1] = Conv[Sum[J] & 0xF]; } return string(Result); } /*}}} */ // SHA1SumValue::operator == - Comparator /*{{{*/ // --------------------------------------------------------------------- /* Call memcmp on the buffer */ bool SHA1SumValue::operator == (const SHA1SumValue & rhs) const { return memcmp(Sum,rhs.Sum,sizeof(Sum)) == 0; } /*}}}*/ // SHA1Summation::SHA1Summation - Constructor /*{{{*/ // --------------------------------------------------------------------- /* */ SHA1Summation::SHA1Summation() { uint32_t *state = (uint32_t *)State; uint32_t *count = (uint32_t *)Count; /* SHA1 initialization constants */ state[0] = 0x67452301; state[1] = 0xEFCDAB89; state[2] = 0x98BADCFE; state[3] = 0x10325476; state[4] = 0xC3D2E1F0; count[0] = 0; count[1] = 0; Done = false; } /*}}}*/ // SHA1Summation::Result - Return checksum value /*{{{*/ // --------------------------------------------------------------------- /* Add() may not be called after this */ SHA1SumValue SHA1Summation::Result() { uint32_t *state = (uint32_t *)State; uint32_t *count = (uint32_t *)Count; // Apply the padding if (Done == false) { unsigned char finalcount[8]; for (unsigned i = 0; i < 8; i++) { // Endian independent finalcount[i] = (unsigned char) ((count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) & 255); } Add((unsigned char *) "\200",1); while ((count[0] & 504) != 448) Add((unsigned char *) "\0",1); Add(finalcount,8); /* Should cause a SHA1Transform() */ } Done = true; // Transfer over the result SHA1SumValue Value; for (unsigned i = 0; i < 20; i++) { Value.Sum[i] = (unsigned char) ((state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255); } return Value; } /*}}}*/ // SHA1Summation::Add - Adds content of buffer into the checksum /*{{{*/ // --------------------------------------------------------------------- /* May not be called after Result() is called */ bool SHA1Summation::Add(const unsigned char *data,unsigned long len) { if (Done) return false; uint32_t *state = (uint32_t *)State; uint32_t *count = (uint32_t *)Count; uint8_t *buffer = (uint8_t *)Buffer; uint32_t i,j; j = (count[0] >> 3) & 63; if ((count[0] += len << 3) < (len << 3)) count[1]++; count[1] += (len >> 29); if ((j + len) > 63) { memcpy(&buffer[j],data,(i = 64 - j)); SHA1Transform(state,buffer); for (; i + 63 < len; i += 64) { SHA1Transform(state,&data[i]); } j = 0; } else i = 0; memcpy(&buffer[j],&data[i],len - i); return true; } /*}}}*/ // SHA1Summation::AddFD - Add content of file into the checksum /*{{{*/ // --------------------------------------------------------------------- /* */ bool SHA1Summation::AddFD(int Fd,unsigned long Size) { unsigned char Buf[64 * 64]; int Res = 0; int ToEOF = (Size == 0); while (Size != 0 || ToEOF) { unsigned n = sizeof(Buf); if (!ToEOF) n = min(Size,(unsigned long)n); Res = read(Fd,Buf,n); if (Res < 0 || (!ToEOF && (unsigned) Res != n)) // error, or short read return false; if (ToEOF && Res == 0) // EOF break; Size -= Res; Add(Buf,Res); } return true; } /*}}}*/