/* ldid - (Mach-O) Link-Loader Identity Editor
* Copyright (C) 2007-2012 Jay Freeman (saurik)
*/
/* GNU Affero General Public License, Version 3 {{{ */
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
**/
/* }}} */
#include "minimal/stdlib.h"
#include "minimal/string.h"
#include "minimal/mapping.h"
extern "C" {
#include "sha.h"
}
#include
#include
#include
struct fat_header {
uint32_t magic;
uint32_t nfat_arch;
} _packed;
#define FAT_MAGIC 0xcafebabe
#define FAT_CIGAM 0xbebafeca
struct fat_arch {
uint32_t cputype;
uint32_t cpusubtype;
uint32_t offset;
uint32_t size;
uint32_t align;
} _packed;
struct mach_header {
uint32_t magic;
uint32_t cputype;
uint32_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;
} _packed;
#define MH_MAGIC 0xfeedface
#define MH_CIGAM 0xcefaedfe
#define MH_MAGIC_64 0xfeedfacf
#define MH_CIGAM_64 0xcffaedfe
#define MH_DYLDLINK 0x4
#define MH_OBJECT 0x1
#define MH_EXECUTE 0x2
#define MH_DYLIB 0x6
#define MH_BUNDLE 0x8
#define MH_DYLIB_STUB 0x9
struct load_command {
uint32_t cmd;
uint32_t cmdsize;
} _packed;
#define LC_REQ_DYLD uint32_t(0x80000000)
#define LC_SEGMENT uint32_t(0x01)
#define LC_SYMTAB uint32_t(0x02)
#define LC_DYSYMTAB uint32_t(0x0b)
#define LC_LOAD_DYLIB uint32_t(0x0c)
#define LC_ID_DYLIB uint32_t(0x0d)
#define LC_SEGMENT_64 uint32_t(0x19)
#define LC_UUID uint32_t(0x1b)
#define LC_CODE_SIGNATURE uint32_t(0x1d)
#define LC_SEGMENT_SPLIT_INFO uint32_t(0x1e)
#define LC_REEXPORT_DYLIB uint32_t(0x1f | LC_REQ_DYLD)
#define LC_ENCRYPTION_INFO uint32_t(0x21)
#define LC_DYLD_INFO uint32_t(0x22)
#define LC_DYLD_INFO_ONLY uint32_t(0x22 | LC_REQ_DYLD)
struct dylib {
uint32_t name;
uint32_t timestamp;
uint32_t current_version;
uint32_t compatibility_version;
} _packed;
struct dylib_command {
uint32_t cmd;
uint32_t cmdsize;
struct dylib dylib;
} _packed;
struct uuid_command {
uint32_t cmd;
uint32_t cmdsize;
uint8_t uuid[16];
} _packed;
struct symtab_command {
uint32_t cmd;
uint32_t cmdsize;
uint32_t symoff;
uint32_t nsyms;
uint32_t stroff;
uint32_t strsize;
} _packed;
struct dyld_info_command {
uint32_t cmd;
uint32_t cmdsize;
uint32_t rebase_off;
uint32_t rebase_size;
uint32_t bind_off;
uint32_t bind_size;
uint32_t weak_bind_off;
uint32_t weak_bind_size;
uint32_t lazy_bind_off;
uint32_t lazy_bind_size;
uint32_t export_off;
uint32_t export_size;
} _packed;
struct dysymtab_command {
uint32_t cmd;
uint32_t cmdsize;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t iundefsym;
uint32_t nundefsym;
uint32_t tocoff;
uint32_t ntoc;
uint32_t modtaboff;
uint32_t nmodtab;
uint32_t extrefsymoff;
uint32_t nextrefsyms;
uint32_t indirectsymoff;
uint32_t nindirectsyms;
uint32_t extreloff;
uint32_t nextrel;
uint32_t locreloff;
uint32_t nlocrel;
} _packed;
struct dylib_table_of_contents {
uint32_t symbol_index;
uint32_t module_index;
} _packed;
struct dylib_module {
uint32_t module_name;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t irefsym;
uint32_t nrefsym;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextrel;
uint32_t nextrel;
uint32_t iinit_iterm;
uint32_t ninit_nterm;
uint32_t objc_module_info_addr;
uint32_t objc_module_info_size;
} _packed;
struct dylib_reference {
uint32_t isym:24;
uint32_t flags:8;
} _packed;
struct relocation_info {
int32_t r_address;
uint32_t r_symbolnum:24;
uint32_t r_pcrel:1;
uint32_t r_length:2;
uint32_t r_extern:1;
uint32_t r_type:4;
} _packed;
struct nlist {
union {
char *n_name;
int32_t n_strx;
} n_un;
uint8_t n_type;
uint8_t n_sect;
uint8_t n_desc;
uint32_t n_value;
} _packed;
struct segment_command {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
uint32_t maxprot;
uint32_t initprot;
uint32_t nsects;
uint32_t flags;
} _packed;
struct segment_command_64 {
uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint64_t vmaddr;
uint64_t vmsize;
uint64_t fileoff;
uint64_t filesize;
uint32_t maxprot;
uint32_t initprot;
uint32_t nsects;
uint32_t flags;
} _packed;
struct section {
char sectname[16];
char segname[16];
uint32_t addr;
uint32_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;
} _packed;
struct section_64 {
char sectname[16];
char segname[16];
uint64_t addr;
uint64_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;
} _packed;
struct linkedit_data_command {
uint32_t cmd;
uint32_t cmdsize;
uint32_t dataoff;
uint32_t datasize;
} _packed;
struct encryption_info_command {
uint32_t cmd;
uint32_t cmdsize;
uint32_t cryptoff;
uint32_t cryptsize;
uint32_t cryptid;
} _packed;
#define BIND_OPCODE_MASK 0xf0
#define BIND_IMMEDIATE_MASK 0x0f
#define BIND_OPCODE_DONE 0x00
#define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM 0x10
#define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB 0x20
#define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM 0x30
#define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM 0x40
#define BIND_OPCODE_SET_TYPE_IMM 0x50
#define BIND_OPCODE_SET_ADDEND_SLEB 0x60
#define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB 0x70
#define BIND_OPCODE_ADD_ADDR_ULEB 0x80
#define BIND_OPCODE_DO_BIND 0x90
#define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB 0xa0
#define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED 0xb0
#define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB 0xc0
template
Type_ Align(Type_ value, size_t align) {
value += align - 1;
value /= align;
value *= align;
return value;
}
uint16_t Swap_(uint16_t value) {
return
((value >> 8) & 0x00ff) |
((value << 8) & 0xff00);
}
uint32_t Swap_(uint32_t value) {
value = ((value >> 8) & 0x00ff00ff) |
((value << 8) & 0xff00ff00);
value = ((value >> 16) & 0x0000ffff) |
((value << 16) & 0xffff0000);
return value;
}
uint64_t Swap_(uint64_t value) {
value = (value & 0x00000000ffffffffULL) << 32 | (value & 0xffffffff00000000ULL) >> 32;
value = (value & 0x0000ffff0000ffffULL) << 16 | (value & 0xffff0000ffff0000ULL) >> 16;
value = (value & 0x00ff00ff00ff00ffULL) << 8 | (value & 0xff00ff00ff00ff00ULL) >> 8;
return value;
}
int16_t Swap_(int16_t value) {
return Swap_(static_cast(value));
}
int32_t Swap_(int32_t value) {
return Swap_(static_cast(value));
}
int64_t Swap_(int64_t value) {
return Swap_(static_cast(value));
}
bool little_(true);
uint16_t Swap(uint16_t value) {
return little_ ? Swap_(value) : value;
}
uint32_t Swap(uint32_t value) {
return little_ ? Swap_(value) : value;
}
uint64_t Swap(uint64_t value) {
return little_ ? Swap_(value) : value;
}
int16_t Swap(int16_t value) {
return Swap(static_cast(value));
}
int32_t Swap(int32_t value) {
return Swap(static_cast(value));
}
int64_t Swap(int64_t value) {
return Swap(static_cast(value));
}
template
class Pointer;
class Data {
private:
void *base_;
size_t size_;
protected:
bool swapped_;
public:
Data(void *base, size_t size) :
base_(base),
size_(size),
swapped_(false)
{
}
uint16_t Swap(uint16_t value) const {
return swapped_ ? Swap_(value) : value;
}
uint32_t Swap(uint32_t value) const {
return swapped_ ? Swap_(value) : value;
}
uint64_t Swap(uint64_t value) const {
return swapped_ ? Swap_(value) : value;
}
int16_t Swap(int16_t value) const {
return Swap(static_cast(value));
}
int32_t Swap(int32_t value) const {
return Swap(static_cast(value));
}
int64_t Swap(int64_t value) const {
return Swap(static_cast(value));
}
void *GetBase() const {
return base_;
}
size_t GetSize() const {
return size_;
}
};
class MachHeader :
public Data
{
private:
bool bits64_;
struct mach_header *mach_header_;
struct load_command *load_command_;
public:
MachHeader(void *base, size_t size) :
Data(base, size)
{
mach_header_ = (mach_header *) base;
switch (Swap(mach_header_->magic)) {
case MH_CIGAM:
swapped_ = !swapped_;
case MH_MAGIC:
bits64_ = false;
break;
case MH_CIGAM_64:
swapped_ = !swapped_;
case MH_MAGIC_64:
bits64_ = true;
break;
default:
_assert(false);
}
void *post = mach_header_ + 1;
if (bits64_)
post = (uint32_t *) post + 1;
load_command_ = (struct load_command *) post;
_assert(
Swap(mach_header_->filetype) == MH_EXECUTE ||
Swap(mach_header_->filetype) == MH_DYLIB ||
Swap(mach_header_->filetype) == MH_BUNDLE
);
}
struct mach_header *operator ->() const {
return mach_header_;
}
operator struct mach_header *() const {
return mach_header_;
}
uint32_t GetCPUType() const {
return Swap(mach_header_->cputype);
}
uint32_t GetCPUSubtype() const {
return Swap(mach_header_->cpusubtype) & 0xff;
}
struct load_command *GetLoadCommand() const {
return load_command_;
}
std::vector GetLoadCommands() const {
std::vector load_commands;
struct load_command *load_command = load_command_;
for (uint32_t cmd = 0; cmd != Swap(mach_header_->ncmds); ++cmd) {
load_commands.push_back(load_command);
load_command = (struct load_command *) ((uint8_t *) load_command + Swap(load_command->cmdsize));
}
return load_commands;
}
std::vector GetSegments(const char *segment_name) const {
std::vector segment_commands;
_foreach (load_command, GetLoadCommands()) {
if (Swap(load_command->cmd) == LC_SEGMENT) {
segment_command *segment_command = reinterpret_cast(load_command);
if (strncmp(segment_command->segname, segment_name, 16) == 0)
segment_commands.push_back(segment_command);
}
}
return segment_commands;
}
std::vector GetSegments64(const char *segment_name) const {
std::vector segment_commands;
_foreach (load_command, GetLoadCommands()) {
if (Swap(load_command->cmd) == LC_SEGMENT_64) {
segment_command_64 *segment_command = reinterpret_cast(load_command);
if (strncmp(segment_command->segname, segment_name, 16) == 0)
segment_commands.push_back(segment_command);
}
}
return segment_commands;
}
std::vector GetSections(const char *segment_name, const char *section_name) const {
std::vector sections;
_foreach (segment, GetSegments(segment_name)) {
section *section = (struct section *) (segment + 1);
uint32_t sect;
for (sect = 0; sect != Swap(segment->nsects); ++sect) {
if (strncmp(section->sectname, section_name, 16) == 0)
sections.push_back(section);
++section;
}
}
return sections;
}
template
Pointer GetPointer(uint32_t address, const char *segment_name = NULL) const {
load_command *load_command = (struct load_command *) (mach_header_ + 1);
uint32_t cmd;
for (cmd = 0; cmd != Swap(mach_header_->ncmds); ++cmd) {
if (Swap(load_command->cmd) == LC_SEGMENT) {
segment_command *segment_command = (struct segment_command *) load_command;
if (segment_name != NULL && strncmp(segment_command->segname, segment_name, 16) != 0)
goto next_command;
section *sections = (struct section *) (segment_command + 1);
uint32_t sect;
for (sect = 0; sect != Swap(segment_command->nsects); ++sect) {
section *section = §ions[sect];
//printf("%s %u %p %p %u\n", segment_command->segname, sect, address, section->addr, section->size);
if (address >= Swap(section->addr) && address < Swap(section->addr) + Swap(section->size)) {
//printf("0x%.8x %s\n", address, segment_command->segname);
return Pointer(this, reinterpret_cast(address - Swap(section->addr) + Swap(section->offset) + (char *) mach_header_));
}
}
}
next_command:
load_command = (struct load_command *) ((char *) load_command + Swap(load_command->cmdsize));
}
return Pointer(this);
}
template
Pointer GetOffset(uint32_t offset) {
return Pointer(this, reinterpret_cast(offset + (uint8_t *) mach_header_));
}
};
class FatMachHeader :
public MachHeader
{
private:
fat_arch *fat_arch_;
public:
FatMachHeader(void *base, size_t size, fat_arch *fat_arch) :
MachHeader(base, size),
fat_arch_(fat_arch)
{
}
fat_arch *GetFatArch() const {
return fat_arch_;
}
};
class FatHeader :
public Data
{
private:
fat_header *fat_header_;
std::vector mach_headers_;
public:
FatHeader(void *base, size_t size) :
Data(base, size)
{
fat_header_ = reinterpret_cast(base);
if (Swap(fat_header_->magic) == FAT_CIGAM) {
swapped_ = !swapped_;
goto fat;
} else if (Swap(fat_header_->magic) != FAT_MAGIC) {
fat_header_ = NULL;
mach_headers_.push_back(FatMachHeader(base, size, NULL));
} else fat: {
size_t fat_narch = Swap(fat_header_->nfat_arch);
fat_arch *fat_arch = reinterpret_cast(fat_header_ + 1);
size_t arch;
for (arch = 0; arch != fat_narch; ++arch) {
uint32_t arch_offset = Swap(fat_arch->offset);
uint32_t arch_size = Swap(fat_arch->size);
mach_headers_.push_back(FatMachHeader((uint8_t *) base + arch_offset, arch_size, fat_arch));
++fat_arch;
}
}
}
std::vector &GetMachHeaders() {
return mach_headers_;
}
bool IsFat() const {
return fat_header_ != NULL;
}
struct fat_header *operator ->() const {
return fat_header_;
}
operator struct fat_header *() const {
return fat_header_;
}
};
FatHeader Map(const char *path, bool ro = false) {
size_t size;
void *base(map(path, 0, _not(size_t), &size, ro));
return FatHeader(base, size);
}
template
class Pointer {
private:
const MachHeader *framework_;
const Target_ *pointer_;
public:
Pointer(const MachHeader *framework = NULL, const Target_ *pointer = NULL) :
framework_(framework),
pointer_(pointer)
{
}
operator const Target_ *() const {
return pointer_;
}
const Target_ *operator ->() const {
return pointer_;
}
Pointer &operator ++() {
++pointer_;
return *this;
}
template
Value_ Swap(Value_ value) {
return framework_->Swap(value);
}
};
#define CSMAGIC_CODEDIRECTORY uint32_t(0xfade0c02)
#define CSMAGIC_EMBEDDED_SIGNATURE uint32_t(0xfade0cc0)
#define CSMAGIC_ENTITLEMENTS uint32_t(0xfade7171)
#define CSSLOT_CODEDIRECTORY uint32_t(0)
#define CSSLOT_REQUIREMENTS uint32_t(2)
#define CSSLOT_ENTITLEMENTS uint32_t(5)
struct BlobIndex {
uint32_t type;
uint32_t offset;
} _packed;
struct Blob {
uint32_t magic;
uint32_t length;
} _packed;
struct SuperBlob {
struct Blob blob;
uint32_t count;
struct BlobIndex index[];
} _packed;
struct CodeDirectory {
struct Blob blob;
uint32_t version;
uint32_t flags;
uint32_t hashOffset;
uint32_t identOffset;
uint32_t nSpecialSlots;
uint32_t nCodeSlots;
uint32_t codeLimit;
uint8_t hashSize;
uint8_t hashType;
uint8_t spare1;
uint8_t pageSize;
uint32_t spare2;
} _packed;
extern "C" uint32_t hash(uint8_t *k, uint32_t length, uint32_t initval);
void sha2(uint8_t *hash, uint8_t *data, size_t size) {
SHA256Context context;
SHA256Reset(&context);
SHA256Input(&context, data, size);
SHA256Result(&context, hash);
}
struct CodesignAllocation {
FatMachHeader mach_header_;
uint32_t offset_;
uint32_t size_;
uint32_t alloc_;
uint32_t align_;
CodesignAllocation(FatMachHeader mach_header, size_t offset, size_t size, size_t alloc, size_t align) :
mach_header_(mach_header),
offset_(offset),
size_(size),
alloc_(alloc),
align_(align)
{
}
};
int main(int argc, const char *argv[]) {
union {
uint16_t word;
uint8_t byte[2];
} endian = {1};
little_ = endian.byte[0];
bool flag_R(false);
bool flag_r(false);
bool flag_t(false);
bool flag_p(false);
bool flag_u(false);
bool flag_e(false);
bool flag_T(false);
bool flag_S(false);
bool flag_s(false);
bool flag_O(false);
bool flag_D(false);
bool flag_d(false);
bool flag_A(false);
bool flag_a(false);
uint32_t flag_CPUType(_not(uint32_t));
uint32_t flag_CPUSubtype(_not(uint32_t));
const char *flag_I(NULL);
bool timeh(false);
uint32_t timev(0);
const void *xmld(NULL);
size_t xmls(0);
uintptr_t noffset(_not(uintptr_t));
uintptr_t woffset(_not(uintptr_t));
std::vector files;
if (argc == 1) {
fprintf(stderr, "usage: %s -S[entitlements.xml] \n", argv[0]);
fprintf(stderr, " %s -e MobileSafari\n", argv[0]);
fprintf(stderr, " %s -S cat\n", argv[0]);
fprintf(stderr, " %s -Stfp.xml gdb\n", argv[0]);
exit(0);
}
for (int argi(1); argi != argc; ++argi)
if (argv[argi][0] != '-')
files.push_back(argv[argi]);
else switch (argv[argi][1]) {
case 'R': flag_R = true; break;
case 'r': flag_r = true; break;
case 't': flag_t = true; break;
case 'u': flag_u = true; break;
case 'p': flag_p = true; break;
case 'e': flag_e = true; break;
case 'O': flag_O = true; break;
case 'D': flag_D = true; break;
case 'd': flag_d = true; break;
case 'a': flag_a = true; break;
case 'A':
flag_A = true;
if (argv[argi][2] != '\0') {
const char *cpu = argv[argi] + 2;
const char *colon = strchr(cpu, ':');
_assert(colon != NULL);
char *arge;
flag_CPUType = strtoul(cpu, &arge, 0);
_assert(arge == colon);
flag_CPUSubtype = strtoul(colon + 1, &arge, 0);
_assert(arge == argv[argi] + strlen(argv[argi]));
}
break;
case 's':
_assert(!flag_S);
flag_s = true;
break;
case 'S':
_assert(!flag_s);
flag_S = true;
if (argv[argi][2] != '\0') {
const char *xml = argv[argi] + 2;
xmld = map(xml, 0, _not(size_t), &xmls, true);
}
break;
case 'T': {
flag_T = true;
if (argv[argi][2] == '-')
timeh = true;
else {
char *arge;
timev = strtoul(argv[argi] + 2, &arge, 0);
_assert(arge == argv[argi] + strlen(argv[argi]));
}
} break;
case 'I': {
flag_I = argv[argi] + 2;
} break;
case 'n': {
char *arge;
noffset = strtoul(argv[argi] + 2, &arge, 0);
_assert(arge == argv[argi] + strlen(argv[argi]));
} break;
case 'w': {
char *arge;
woffset = strtoul(argv[argi] + 2, &arge, 0);
_assert(arge == argv[argi] + strlen(argv[argi]));
} break;
default:
goto usage;
break;
}
if (files.empty()) usage: {
exit(0);
}
size_t filei(0), filee(0);
_foreach (file, files) try {
const char *path(file.c_str());
const char *base = strrchr(path, '/');
char *temp(NULL), *dir;
if (base != NULL)
dir = strndup_(path, base++ - path + 1);
else {
dir = strdup("");
base = path;
}
const char *name(flag_I ?: base);
if (flag_r) {
uint32_t clip(0); {
FatHeader fat_header(Map(path));
_foreach (mach_header, fat_header.GetMachHeaders()) {
if (flag_A) {
if (mach_header.GetCPUType() != flag_CPUType)
continue;
if (mach_header.GetCPUSubtype() != flag_CPUSubtype)
continue;
}
mach_header->flags = mach_header.Swap(mach_header.Swap(mach_header->flags) | MH_DYLDLINK);
uint32_t size(_not(uint32_t)); {
_foreach (load_command, mach_header.GetLoadCommands()) {
switch (mach_header.Swap(load_command->cmd)) {
case LC_CODE_SIGNATURE: {
struct linkedit_data_command *signature = reinterpret_cast(load_command);
memset(reinterpret_cast(mach_header.GetBase()) + mach_header.Swap(signature->dataoff), 0, mach_header.Swap(signature->datasize));
memset(signature, 0, sizeof(struct linkedit_data_command));
mach_header->ncmds = mach_header.Swap(mach_header.Swap(mach_header->ncmds) - 1);
mach_header->sizeofcmds = mach_header.Swap(uint32_t(mach_header.Swap(mach_header->sizeofcmds) - sizeof(struct linkedit_data_command)));
} break;
case LC_SYMTAB: {
struct symtab_command *symtab = reinterpret_cast(load_command);
size = mach_header.Swap(symtab->stroff) + mach_header.Swap(symtab->strsize);
} break;
}
}
}
_assert(size != _not(uint32_t));
_foreach (segment, mach_header.GetSegments("__LINKEDIT")) {
segment->filesize -= mach_header.GetSize() - size;
if (fat_arch *fat_arch = mach_header.GetFatArch()) {
fat_arch->size = fat_header.Swap(size);
clip = std::max(clip, fat_header.Swap(fat_arch->offset) + size);
} else
clip = std::max(clip, size);
}
_foreach (segment, mach_header.GetSegments64("__LINKEDIT")) {
segment->filesize -= mach_header.GetSize() - size;
if (fat_arch *fat_arch = mach_header.GetFatArch()) {
fat_arch->size = fat_header.Swap(size);
clip = std::max(clip, fat_header.Swap(fat_arch->offset) + size);
} else
clip = std::max(clip, size);
}
}
}
if (clip != 0)
_syscall(truncate(path, clip));
}
if (flag_S) {
FatHeader source(Map(path));
size_t offset(0);
if (source.IsFat())
offset += sizeof(fat_header) + sizeof(fat_arch) * source.Swap(source->nfat_arch);
std::vector allocations; {
_foreach (mach_header, source.GetMachHeaders()) {
if (flag_A) {
if (mach_header.GetCPUType() != flag_CPUType)
continue;
if (mach_header.GetCPUSubtype() != flag_CPUSubtype)
continue;
}
mach_header->flags = mach_header.Swap(mach_header.Swap(mach_header->flags) | MH_DYLDLINK);
size_t size(_not(size_t)); {
_foreach (load_command, mach_header.GetLoadCommands()) {
uint32_t cmd(mach_header.Swap(load_command->cmd));
if (cmd == LC_CODE_SIGNATURE) {
struct linkedit_data_command *signature = reinterpret_cast(load_command);
size = mach_header.Swap(signature->dataoff);
_assert(size < mach_header.GetSize());
break;
}
}
if (size == _not(size_t))
size = mach_header.GetSize();
}
size_t alloc(0);
alloc += sizeof(struct SuperBlob);
uint32_t special(0);
special = std::max(special, CSSLOT_CODEDIRECTORY);
alloc += sizeof(struct BlobIndex);
alloc += sizeof(struct CodeDirectory);
alloc += strlen(name) + 1;
special = std::max(special, CSSLOT_REQUIREMENTS);
alloc += sizeof(struct BlobIndex);
alloc += 0xc;
if (xmld != NULL) {
special = std::max(special, CSSLOT_ENTITLEMENTS);
alloc += sizeof(struct BlobIndex);
alloc += sizeof(struct Blob);
alloc += xmls;
}
size_t normal((size + 0x1000 - 1) / 0x1000);
alloc = Align(alloc + (special + normal) * 0x20, 16);
fat_arch *fat_arch(mach_header.GetFatArch());
uint32_t align(fat_arch == NULL ? 0 : source.Swap(fat_arch->align));
offset = Align(offset, 1 << align);
allocations.push_back(CodesignAllocation(mach_header, offset, size, alloc, align));
offset += size + alloc;
offset = Align(offset, 16);
}
}
asprintf(&temp, "%s.%s.cs", dir, base);
fclose(fopen(temp, "w+"));
_syscall(truncate(temp, offset));
void *file(map(temp, 0, offset, NULL, false));
memset(file, 0, offset);
fat_arch *fat_arch;
if (!source.IsFat())
fat_arch = NULL;
else {
fat_header *fat_header(reinterpret_cast(file));
fat_header->magic = Swap(FAT_MAGIC);
fat_header->nfat_arch = Swap(source.Swap(source->nfat_arch));
fat_arch = reinterpret_cast(fat_header + 1);
}
_foreach (allocation, allocations) {
const FatMachHeader &source(allocation.mach_header_);
uint32_t align(allocation.size_);
align = Align(align, 0x10);
if (fat_arch != NULL) {
fat_arch->cputype = Swap(source->cputype);
fat_arch->cpusubtype = Swap(source->cpusubtype);
fat_arch->offset = Swap(allocation.offset_);
fat_arch->size = Swap(align + allocation.alloc_);
fat_arch->align = Swap(allocation.align_);
++fat_arch;
}
void *target(reinterpret_cast(file) + allocation.offset_);
memcpy(target, source, allocation.size_);
MachHeader mach_header(target, align + allocation.alloc_);
struct linkedit_data_command *signature(NULL);
_foreach (load_command, mach_header.GetLoadCommands()) {
uint32_t cmd(mach_header.Swap(load_command->cmd));
if (cmd != LC_CODE_SIGNATURE)
continue;
signature = reinterpret_cast(load_command);
break;
}
if (signature == NULL) {
mach_header->ncmds = mach_header.Swap(mach_header.Swap(mach_header->ncmds) + 1);
signature = reinterpret_cast(reinterpret_cast(mach_header.GetLoadCommand()) + mach_header.Swap(mach_header->sizeofcmds));
mach_header->sizeofcmds = mach_header.Swap(mach_header.Swap(mach_header->sizeofcmds) + uint32_t(sizeof(*signature)));
signature->cmd = mach_header.Swap(LC_CODE_SIGNATURE);
signature->cmdsize = mach_header.Swap(uint32_t(sizeof(*signature)));
}
signature->dataoff = mach_header.Swap(align);
signature->datasize = mach_header.Swap(allocation.alloc_);
_foreach (segment, mach_header.GetSegments("__LINKEDIT")) {
size_t size(mach_header.Swap(align + allocation.alloc_ - mach_header.Swap(segment->fileoff)));
segment->filesize = size;
segment->vmsize = Align(size, 0x1000);
}
_foreach (segment, mach_header.GetSegments64("__LINKEDIT")) {
size_t size(mach_header.Swap(align + allocation.alloc_ - mach_header.Swap(segment->fileoff)));
segment->filesize = size;
segment->vmsize = Align(size, 0x1000);
}
}
}
if (flag_p)
printf("path%zu='%s'\n", filei, file.c_str());
FatHeader fat_header(Map(temp == NULL ? path : temp, !(flag_R || flag_T || flag_s || flag_S || flag_O || flag_D)));
struct linkedit_data_command *signature(NULL);
_foreach (mach_header, fat_header.GetMachHeaders()) {
if (flag_A) {
if (mach_header.GetCPUType() != flag_CPUType)
continue;
if (mach_header.GetCPUSubtype() != flag_CPUSubtype)
continue;
}
if (flag_a)
printf("cpu=0x%x:0x%x\n", mach_header.GetCPUType(), mach_header.GetCPUSubtype());
if (flag_d) {
if (struct fat_arch *fat_arch = mach_header.GetFatArch())
printf("offset=0x%x\n", Swap(fat_arch->offset));
else
printf("offset=0x0\n");
}
if (woffset != _not(uintptr_t)) {
Pointer wvalue(mach_header.GetPointer(woffset));
if (wvalue == NULL)
printf("(null) %p\n", reinterpret_cast(woffset));
else
printf("0x%.08x\n", *wvalue);
}
if (noffset != _not(uintptr_t))
printf("%s\n", &*mach_header.GetPointer(noffset));
if (flag_d)
_foreach(segment, mach_header.GetSegments("__TEXT")) {
printf("vmaddr=0x%x\n", mach_header.Swap(segment->vmaddr));
printf("fileoff=0x%x\n", mach_header.Swap(segment->fileoff));
}
if (flag_O) {
_foreach(section, mach_header.GetSections("__TEXT", "__text"))
section->addr = mach_header.Swap(0);
}
_foreach (load_command, mach_header.GetLoadCommands()) {
uint32_t cmd(mach_header.Swap(load_command->cmd));
if (flag_R && cmd == LC_REEXPORT_DYLIB)
load_command->cmd = mach_header.Swap(LC_LOAD_DYLIB);
else if (cmd == LC_CODE_SIGNATURE)
signature = reinterpret_cast(load_command);
else if (cmd == LC_UUID) {
volatile struct uuid_command *uuid_command(reinterpret_cast(load_command));
if (flag_u) {
printf("uuid%zu=%.2x%.2x%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x-%.2x%.2x%.2x%.2x%.2x%.2x\n", filei,
uuid_command->uuid[ 0], uuid_command->uuid[ 1], uuid_command->uuid[ 2], uuid_command->uuid[ 3],
uuid_command->uuid[ 4], uuid_command->uuid[ 5], uuid_command->uuid[ 6], uuid_command->uuid[ 7],
uuid_command->uuid[ 8], uuid_command->uuid[ 9], uuid_command->uuid[10], uuid_command->uuid[11],
uuid_command->uuid[12], uuid_command->uuid[13], uuid_command->uuid[14], uuid_command->uuid[15]
);
}
} else if (cmd == LC_ID_DYLIB) {
volatile struct dylib_command *dylib_command(reinterpret_cast(load_command));
if (flag_t)
printf("time%zu=0x%.8x\n", filei, mach_header.Swap(dylib_command->dylib.timestamp));
if (flag_T) {
uint32_t timed;
if (!timeh)
timed = timev;
else {
dylib_command->dylib.timestamp = 0;
timed = hash(reinterpret_cast(mach_header.GetBase()), mach_header.GetSize(), timev);
}
dylib_command->dylib.timestamp = mach_header.Swap(timed);
}
} else if (cmd == LC_ENCRYPTION_INFO) {
volatile struct encryption_info_command *encryption_info_command(reinterpret_cast(load_command));
if (flag_D)
encryption_info_command->cryptid = mach_header.Swap(0);
if (flag_d) {
printf("cryptoff=0x%x\n", mach_header.Swap(encryption_info_command->cryptoff));
printf("cryptsize=0x%x\n", mach_header.Swap(encryption_info_command->cryptsize));
printf("cryptid=0x%x\n", mach_header.Swap(encryption_info_command->cryptid));
}
}
}
if (flag_e) {
_assert(signature != NULL);
uint32_t data = mach_header.Swap(signature->dataoff);
uint8_t *top = reinterpret_cast(mach_header.GetBase());
uint8_t *blob = top + data;
struct SuperBlob *super = reinterpret_cast(blob);
for (size_t index(0); index != Swap(super->count); ++index)
if (Swap(super->index[index].type) == CSSLOT_ENTITLEMENTS) {
uint32_t begin = Swap(super->index[index].offset);
struct Blob *entitlements = reinterpret_cast(blob + begin);
fwrite(entitlements + 1, 1, Swap(entitlements->length) - sizeof(struct Blob), stdout);
}
}
if (flag_s) {
_assert(signature != NULL);
uint32_t data = mach_header.Swap(signature->dataoff);
uint8_t *top = reinterpret_cast(mach_header.GetBase());
uint8_t *blob = top + data;
struct SuperBlob *super = reinterpret_cast(blob);
for (size_t index(0); index != Swap(super->count); ++index)
if (Swap(super->index[index].type) == CSSLOT_CODEDIRECTORY) {
uint32_t begin = Swap(super->index[index].offset);
struct CodeDirectory *directory = reinterpret_cast(blob + begin);
uint8_t (*hashes)[32] = reinterpret_cast(blob + begin + Swap(directory->hashOffset));
uint32_t pages = Swap(directory->nCodeSlots);
if (pages != 1)
for (size_t i = 0; i != pages - 1; ++i)
sha2(hashes[i], top + 0x1000 * i, 0x1000);
if (pages != 0)
sha2(hashes[pages - 1], top + 0x1000 * (pages - 1), ((data - 1) % 0x1000) + 1);
}
}
if (flag_S) {
_assert(signature != NULL);
uint32_t data = mach_header.Swap(signature->dataoff);
uint32_t size = mach_header.Swap(signature->datasize);
uint8_t *top = reinterpret_cast(mach_header.GetBase());
uint8_t *blob = top + data;
struct SuperBlob *super = reinterpret_cast(blob);
super->blob.magic = Swap(CSMAGIC_EMBEDDED_SIGNATURE);
uint32_t count = xmld == NULL ? 2 : 3;
uint32_t offset = sizeof(struct SuperBlob) + count * sizeof(struct BlobIndex);
super->index[0].type = Swap(CSSLOT_CODEDIRECTORY);
super->index[0].offset = Swap(offset);
uint32_t begin = offset;
struct CodeDirectory *directory = reinterpret_cast(blob + begin);
offset += sizeof(struct CodeDirectory);
directory->blob.magic = Swap(CSMAGIC_CODEDIRECTORY);
directory->version = Swap(uint32_t(0x00020001));
directory->flags = Swap(uint32_t(0));
directory->codeLimit = Swap(data);
directory->hashSize = 0x20;
directory->hashType = 0x02;
directory->spare1 = 0x00;
directory->pageSize = 0x0c;
directory->spare2 = Swap(uint32_t(0));
directory->identOffset = Swap(offset - begin);
strcpy(reinterpret_cast(blob + offset), name);
offset += strlen(name) + 1;
uint32_t special = xmld == NULL ? CSSLOT_REQUIREMENTS : CSSLOT_ENTITLEMENTS;
directory->nSpecialSlots = Swap(special);
uint8_t (*hashes)[32] = reinterpret_cast(blob + offset);
memset(hashes, 0, sizeof(*hashes) * special);
offset += sizeof(*hashes) * special;
hashes += special;
uint32_t pages = (data + 0x1000 - 1) / 0x1000;
directory->nCodeSlots = Swap(pages);
if (pages != 1)
for (size_t i = 0; i != pages - 1; ++i)
sha2(hashes[i], top + 0x1000 * i, 0x1000);
if (pages != 0)
sha2(hashes[pages - 1], top + 0x1000 * (pages - 1), ((data - 1) % 0x1000) + 1);
directory->hashOffset = Swap(offset - begin);
offset += sizeof(*hashes) * pages;
directory->blob.length = Swap(offset - begin);
super->index[1].type = Swap(CSSLOT_REQUIREMENTS);
super->index[1].offset = Swap(offset);
memcpy(blob + offset, "\xfa\xde\x0c\x01\x00\x00\x00\x0c\x00\x00\x00\x00", 0xc);
offset += 0xc;
if (xmld != NULL) {
super->index[2].type = Swap(CSSLOT_ENTITLEMENTS);
super->index[2].offset = Swap(offset);
uint32_t begin = offset;
struct Blob *entitlements = reinterpret_cast(blob + begin);
offset += sizeof(struct Blob);
memcpy(blob + offset, xmld, xmls);
offset += xmls;
entitlements->magic = Swap(CSMAGIC_ENTITLEMENTS);
entitlements->length = Swap(offset - begin);
}
for (size_t index(0); index != count; ++index) {
uint32_t type = Swap(super->index[index].type);
if (type != 0 && type <= special) {
uint32_t offset = Swap(super->index[index].offset);
struct Blob *local = (struct Blob *) (blob + offset);
sha2((uint8_t *) (hashes - type), (uint8_t *) local, Swap(local->length));
}
}
super->count = Swap(count);
super->blob.length = Swap(offset);
if (offset > size) {
fprintf(stderr, "offset (%u) > size (%u)\n", offset, size);
_assert(false);
} //else fprintf(stderr, "offset (%zu) <= size (%zu)\n", offset, size);
memset(blob + offset, 0, size - offset);
}
}
if (flag_S) {
uint8_t *top = reinterpret_cast(fat_header.GetBase());
size_t size = fat_header.GetSize();
char *copy;
asprintf(©, "%s.%s.cp", dir, base);
FILE *file = fopen(copy, "w+");
size_t writ = fwrite(top, 1, size, file);
_assert(writ == size);
fclose(file);
_syscall(unlink(temp));
free(temp);
temp = copy;
}
if (temp != NULL) {
struct stat info;
_syscall(stat(path, &info));
_syscall(chown(temp, info.st_uid, info.st_gid));
_syscall(chmod(temp, info.st_mode));
_syscall(unlink(path));
_syscall(rename(temp, path));
free(temp);
}
free(dir);
++filei;
} catch (const char *) {
++filee;
++filei;
}
return filee;
}