Age | Commit message (Collapse) | Author |
|
Git-Dch: Ignore
|
|
Based on a discussion with Niels Thykier who asked for Contents-all this
implements apt trying for all architecture dependent files to get a file
for the architecture all, which is treated internally now as an official
architecture which is always around (like native). This way arch:all
data can be shared instead of duplicated for each architecture requiring
the user to download the same information again and again.
There is one problem however: In Debian there is already a binary-all/
Packages file, but the binary-any files still include arch:all packages,
so that downloading this file now would be a waste of time, bandwidth
and diskspace. We therefore need a way to decide if it makes sense to
download the all file for Packages in Debian or not. The obvious answer
would be a special flag in the Release file indicating this, which would
need to default to 'no' and every reasonable repository would override
it to 'yes' in a few years time, but the flag would be there "forever".
Looking closer at a Release file we see the field "Architectures", which
doesn't include 'all' at the moment. With the idea outlined above that
'all' is a "proper" architecture now, we interpret this field as being
authoritative in declaring which architectures are supported by this
repository. If it says 'all', apt will try to get all, if not it will be
skipped. This gives us another interesting feature: If I configure a
source to download armel and mips, but it declares it supports only
armel apt will now print a notice saying as much. Previously this was a
very cryptic failure. If on the other hand the repository supports mips,
too, but for some reason doesn't ship mips packages at the moment, this
'missing' file is silently ignored (= that is the same as the repository
including an empty file).
The Architectures field isn't mandatory through, so if it isn't there,
we assume that every architecture is supported by this repository, which
skips the arch:all if not listed in the release file.
|
|
This was discussed a while ago on #debian-apt and now that I see myself
making this mistake lets bite the bullet and fix it in the easy way out
version: Using a new name which fits with a similar named setter and
deprecate the old method instead of 'hostily' changing API.
Closes: #803471
|
|
The bugreport is more conservative in asking for a conditional, but
given that this is a message intended to be read by users to be run by
users we should suggest using a command intended to be used by users.
And while we are at, add sudo to the message – conditional of course.
Closes: 801571
|
|
And of course, testing obscure things ends up showing obscure 'bugs' or
better shortcomings/inconsitencies, so lets fix them with the tests.
Git-Dch: Ignore
|
|
The parser creates a preferences as well as an extended states file
based on the EDSP scenario file, which isn't the most efficient way of
dealing with this as thes text files have to be parsed again by another
layer of the code, but it needs the least changes and works good enough
for now. The 'apt' solver is in the end just a test solver like dump.
|
|
As said in the bugreport, this is hardly a serious problem on a security
front, but it was always on the list to have the filename configurable
somehow and the stable filename is a problem for parallel executions.
Using an environment variable (APT_EDSP_DUMP_FILENAME) for this is more
or less the best we can do here as solvers do not get told about our
configuration and such.
Closes: 795600
|
|
The syntax of "Source" is different in EDSP compared to the the field of
the same name in 'the rest' of Debian, so documented this accordingly
and send the version as a new field.
|
|
How the Multi-Arch field and pkg:<arch> dependencies interact was
discussed at DebConf15 in the "MultiArch BoF". dpkg and apt (among other
tools like dose) had a different interpretation in certain scenarios
which we resolved by agreeing on dpkg view – and this commit realizes
this agreement in code.
As was the case so far libapt sticks to the idea of trying to hide
MultiArch as much as possible from individual frontends and instead
translates it to good old SingleArch. There are certainly situations
which can be improved in frontends if they know that MultiArch is upon
them, but these are improvements – not necessary changes needed
to unbreak a frontend.
The implementation idea is simple: If we parse a dependency on foo:amd64
the dependency is formed on a package 'foo:amd64' of arch 'any'. This
package is provided by package 'foo' of arch 'amd64', but not by 'foo'
of arch 'i386'. Both of those foo packages provide each other through
(assuming foo is M-A:foreign) to allow a dependency on 'foo' to be
satisfied by either foo of amd64 or i386. Packages can also declare to
provide 'foo:amd64' which is translated to providing 'foo:amd64:any' as
well.
This indirection over provides was chosen as the alternative would be to
teach dependency resolvers how to deal with architecture specific
dependencies – which violates the design idea of avoiding resolver
changes, especially as architecture-specific dependencies are a
cornercase with quite a few subtil rules. Handling it all over versioned
provides as we already did for M-A in general seems much simpler as it
just works for them.
This switch to :any has actually a "surprising" benefit as well: Even
frontends showing a package name via .Name() [which doesn't show the
architecture] will display the "architecture" for dependencies in which
it was explicitely requested, while we will not show the 'strange' :any
arch in FullName(true) [= pretty-print] either. Before you had to
specialcase these and by default you wouldn't get these details shown.
The only identifiable disadvantage is that this complicates error
reporting and handling. apt-get's ShowBroken has existing problems with
virtual packages [it just shows the name without any reason], so that
has to be worked on eventually. The other case is that detecting if a
package is completely unknown or if it was at least referenced somewhere
needs to acount for this "split" – not that it makes a practical
difference which error is shown… but its one of the improvements
possible.
|
|
We use test{success,failure} now all over the place in the framework, so
its only consequencial to do this in the situations in which we test for
a specific output as well.
Git-Dch: Ignore
|
|
Usually they don't provide a lot in terms of what they test, but they
help in covering many lines from strictly anecdotal commands (stats,
moo) and error messages, so that stuff which really needs to be tested,
but isn't is better visible in coverage reports.
Git-Dch: Ignore
|
|
|
|
|
|
Adds also a small testcase for EDSP
Git-Dch: Ignore
|