diff options
author | Jay Freeman <saurik@saurik.com> | 2010-02-22 09:02:11 +0000 |
---|---|---|
committer | Jay Freeman <saurik@saurik.com> | 2010-02-22 09:02:11 +0000 |
commit | 476f7c611e66acb08094fda54540d116b62d52cb (patch) | |
tree | 5914ee38cef6f2af87038c7b419d427a77113b66 /data/_apt7 | |
parent | 7de713525365420eaf630a97cdfac8563f5eb003 (diff) |
I feel... vindicated?
git-svn-id: http://svn.telesphoreo.org/trunk@698 514c082c-b64e-11dc-b46d-3d985efe055d
Diffstat (limited to 'data/_apt7')
-rw-r--r-- | data/_apt7/vindication.diff | 1104 |
1 files changed, 1104 insertions, 0 deletions
diff --git a/data/_apt7/vindication.diff b/data/_apt7/vindication.diff new file mode 100644 index 000000000..812aff9e3 --- /dev/null +++ b/data/_apt7/vindication.diff @@ -0,0 +1,1104 @@ +diff -Nru apt-0.7.20.2/apt-pkg/lookup3.cc apt-0.7.20.2+iPhone/apt-pkg/lookup3.cc +--- apt-0.7.20.2/apt-pkg/lookup3.cc 1970-01-01 00:00:00.000000000 +0000 ++++ apt-0.7.20.2+iPhone/apt-pkg/lookup3.cc 2010-02-22 08:36:54.000000000 +0000 +@@ -0,0 +1,1007 @@ ++/* ++------------------------------------------------------------------------------- ++lookup3.c, by Bob Jenkins, May 2006, Public Domain. ++ ++These are functions for producing 32-bit hashes for hash table lookup. ++hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() ++are externally useful functions. Routines to test the hash are included ++if SELF_TEST is defined. You can use this free for any purpose. It's in ++the public domain. It has no warranty. ++ ++You probably want to use hashlittle(). hashlittle() and hashbig() ++hash byte arrays. hashlittle() is is faster than hashbig() on ++little-endian machines. Intel and AMD are little-endian machines. ++On second thought, you probably want hashlittle2(), which is identical to ++hashlittle() except it returns two 32-bit hashes for the price of one. ++You could implement hashbig2() if you wanted but I haven't bothered here. ++ ++If you want to find a hash of, say, exactly 7 integers, do ++ a = i1; b = i2; c = i3; ++ mix(a,b,c); ++ a += i4; b += i5; c += i6; ++ mix(a,b,c); ++ a += i7; ++ final(a,b,c); ++then use c as the hash value. If you have a variable length array of ++4-byte integers to hash, use hashword(). If you have a byte array (like ++a character string), use hashlittle(). If you have several byte arrays, or ++a mix of things, see the comments above hashlittle(). ++ ++Why is this so big? I read 12 bytes at a time into 3 4-byte integers, ++then mix those integers. This is fast (you can do a lot more thorough ++mixing with 12*3 instructions on 3 integers than you can with 3 instructions ++on 1 byte), but shoehorning those bytes into integers efficiently is messy. ++------------------------------------------------------------------------------- ++*/ ++#undef SELF_TEST ++ ++#include <stdio.h> /* defines printf for tests */ ++#include <time.h> /* defines time_t for timings in the test */ ++#include <stdint.h> /* defines uint32_t etc */ ++#include <sys/param.h> /* attempt to define endianness */ ++#ifdef linux ++# include <endian.h> /* attempt to define endianness */ ++#endif ++ ++/* ++ * My best guess at if you are big-endian or little-endian. This may ++ * need adjustment. ++ */ ++#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ ++ __BYTE_ORDER == __LITTLE_ENDIAN) || \ ++ (defined(i386) || defined(__i386__) || defined(__i486__) || \ ++ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) ++# define HASH_LITTLE_ENDIAN 1 ++# define HASH_BIG_ENDIAN 0 ++#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ ++ __BYTE_ORDER == __BIG_ENDIAN) || \ ++ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) ++# define HASH_LITTLE_ENDIAN 0 ++# define HASH_BIG_ENDIAN 1 ++#else ++# define HASH_LITTLE_ENDIAN 0 ++# define HASH_BIG_ENDIAN 0 ++#endif ++ ++#define hashsize(n) ((uint32_t)1<<(n)) ++#define hashmask(n) (hashsize(n)-1) ++#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) ++ ++/* ++------------------------------------------------------------------------------- ++mix -- mix 3 32-bit values reversibly. ++ ++This is reversible, so any information in (a,b,c) before mix() is ++still in (a,b,c) after mix(). ++ ++If four pairs of (a,b,c) inputs are run through mix(), or through ++mix() in reverse, there are at least 32 bits of the output that ++are sometimes the same for one pair and different for another pair. ++This was tested for: ++* pairs that differed by one bit, by two bits, in any combination ++ of top bits of (a,b,c), or in any combination of bottom bits of ++ (a,b,c). ++* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed ++ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as ++ is commonly produced by subtraction) look like a single 1-bit ++ difference. ++* the base values were pseudorandom, all zero but one bit set, or ++ all zero plus a counter that starts at zero. ++ ++Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that ++satisfy this are ++ 4 6 8 16 19 4 ++ 9 15 3 18 27 15 ++ 14 9 3 7 17 3 ++Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing ++for "differ" defined as + with a one-bit base and a two-bit delta. I ++used http://burtleburtle.net/bob/hash/avalanche.html to choose ++the operations, constants, and arrangements of the variables. ++ ++This does not achieve avalanche. There are input bits of (a,b,c) ++that fail to affect some output bits of (a,b,c), especially of a. The ++most thoroughly mixed value is c, but it doesn't really even achieve ++avalanche in c. ++ ++This allows some parallelism. Read-after-writes are good at doubling ++the number of bits affected, so the goal of mixing pulls in the opposite ++direction as the goal of parallelism. I did what I could. Rotates ++seem to cost as much as shifts on every machine I could lay my hands ++on, and rotates are much kinder to the top and bottom bits, so I used ++rotates. ++------------------------------------------------------------------------------- ++*/ ++#define mix(a,b,c) \ ++{ \ ++ a -= c; a ^= rot(c, 4); c += b; \ ++ b -= a; b ^= rot(a, 6); a += c; \ ++ c -= b; c ^= rot(b, 8); b += a; \ ++ a -= c; a ^= rot(c,16); c += b; \ ++ b -= a; b ^= rot(a,19); a += c; \ ++ c -= b; c ^= rot(b, 4); b += a; \ ++} ++ ++/* ++------------------------------------------------------------------------------- ++final -- final mixing of 3 32-bit values (a,b,c) into c ++ ++Pairs of (a,b,c) values differing in only a few bits will usually ++produce values of c that look totally different. This was tested for ++* pairs that differed by one bit, by two bits, in any combination ++ of top bits of (a,b,c), or in any combination of bottom bits of ++ (a,b,c). ++* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed ++ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as ++ is commonly produced by subtraction) look like a single 1-bit ++ difference. ++* the base values were pseudorandom, all zero but one bit set, or ++ all zero plus a counter that starts at zero. ++ ++These constants passed: ++ 14 11 25 16 4 14 24 ++ 12 14 25 16 4 14 24 ++and these came close: ++ 4 8 15 26 3 22 24 ++ 10 8 15 26 3 22 24 ++ 11 8 15 26 3 22 24 ++------------------------------------------------------------------------------- ++*/ ++#define final(a,b,c) \ ++{ \ ++ c ^= b; c -= rot(b,14); \ ++ a ^= c; a -= rot(c,11); \ ++ b ^= a; b -= rot(a,25); \ ++ c ^= b; c -= rot(b,16); \ ++ a ^= c; a -= rot(c,4); \ ++ b ^= a; b -= rot(a,14); \ ++ c ^= b; c -= rot(b,24); \ ++} ++ ++/* ++-------------------------------------------------------------------- ++ This works on all machines. To be useful, it requires ++ -- that the key be an array of uint32_t's, and ++ -- that the length be the number of uint32_t's in the key ++ ++ The function hashword() is identical to hashlittle() on little-endian ++ machines, and identical to hashbig() on big-endian machines, ++ except that the length has to be measured in uint32_ts rather than in ++ bytes. hashlittle() is more complicated than hashword() only because ++ hashlittle() has to dance around fitting the key bytes into registers. ++-------------------------------------------------------------------- ++*/ ++uint32_t hashword( ++const uint32_t *k, /* the key, an array of uint32_t values */ ++size_t length, /* the length of the key, in uint32_ts */ ++uint32_t initval) /* the previous hash, or an arbitrary value */ ++{ ++ uint32_t a,b,c; ++ ++ /* Set up the internal state */ ++ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; ++ ++ /*------------------------------------------------- handle most of the key */ ++ while (length > 3) ++ { ++ a += k[0]; ++ b += k[1]; ++ c += k[2]; ++ mix(a,b,c); ++ length -= 3; ++ k += 3; ++ } ++ ++ /*------------------------------------------- handle the last 3 uint32_t's */ ++ switch(length) /* all the case statements fall through */ ++ { ++ case 3 : c+=k[2]; ++ case 2 : b+=k[1]; ++ case 1 : a+=k[0]; ++ final(a,b,c); ++ case 0: /* case 0: nothing left to add */ ++ break; ++ } ++ /*------------------------------------------------------ report the result */ ++ return c; ++} ++ ++ ++/* ++-------------------------------------------------------------------- ++hashword2() -- same as hashword(), but take two seeds and return two ++32-bit values. pc and pb must both be nonnull, and *pc and *pb must ++both be initialized with seeds. If you pass in (*pb)==0, the output ++(*pc) will be the same as the return value from hashword(). ++-------------------------------------------------------------------- ++*/ ++void hashword2 ( ++const uint32_t *k, /* the key, an array of uint32_t values */ ++size_t length, /* the length of the key, in uint32_ts */ ++uint32_t *pc, /* IN: seed OUT: primary hash value */ ++uint32_t *pb) /* IN: more seed OUT: secondary hash value */ ++{ ++ uint32_t a,b,c; ++ ++ /* Set up the internal state */ ++ a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; ++ c += *pb; ++ ++ /*------------------------------------------------- handle most of the key */ ++ while (length > 3) ++ { ++ a += k[0]; ++ b += k[1]; ++ c += k[2]; ++ mix(a,b,c); ++ length -= 3; ++ k += 3; ++ } ++ ++ /*------------------------------------------- handle the last 3 uint32_t's */ ++ switch(length) /* all the case statements fall through */ ++ { ++ case 3 : c+=k[2]; ++ case 2 : b+=k[1]; ++ case 1 : a+=k[0]; ++ final(a,b,c); ++ case 0: /* case 0: nothing left to add */ ++ break; ++ } ++ /*------------------------------------------------------ report the result */ ++ *pc=c; *pb=b; ++} ++ ++ ++/* ++------------------------------------------------------------------------------- ++hashlittle() -- hash a variable-length key into a 32-bit value ++ k : the key (the unaligned variable-length array of bytes) ++ length : the length of the key, counting by bytes ++ initval : can be any 4-byte value ++Returns a 32-bit value. Every bit of the key affects every bit of ++the return value. Two keys differing by one or two bits will have ++totally different hash values. ++ ++The best hash table sizes are powers of 2. There is no need to do ++mod a prime (mod is sooo slow!). If you need less than 32 bits, ++use a bitmask. For example, if you need only 10 bits, do ++ h = (h & hashmask(10)); ++In which case, the hash table should have hashsize(10) elements. ++ ++If you are hashing n strings (uint8_t **)k, do it like this: ++ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); ++ ++By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this ++code any way you wish, private, educational, or commercial. It's free. ++ ++Use for hash table lookup, or anything where one collision in 2^^32 is ++acceptable. Do NOT use for cryptographic purposes. ++------------------------------------------------------------------------------- ++*/ ++ ++uint32_t hashlittle( const void *key, size_t length, uint32_t initval) ++{ ++ uint32_t a,b,c; /* internal state */ ++ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ ++ ++ /* Set up the internal state */ ++ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; ++ ++ u.ptr = key; ++ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { ++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ ++#ifdef VALGRIND ++ const uint8_t *k8; ++#endif ++ ++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += k[0]; ++ b += k[1]; ++ c += k[2]; ++ mix(a,b,c); ++ length -= 12; ++ k += 3; ++ } ++ ++ /*----------------------------- handle the last (probably partial) block */ ++ /* ++ * "k[2]&0xffffff" actually reads beyond the end of the string, but ++ * then masks off the part it's not allowed to read. Because the ++ * string is aligned, the masked-off tail is in the same word as the ++ * rest of the string. Every machine with memory protection I've seen ++ * does it on word boundaries, so is OK with this. But VALGRIND will ++ * still catch it and complain. The masking trick does make the hash ++ * noticably faster for short strings (like English words). ++ */ ++#ifndef VALGRIND ++ ++ switch(length) ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; ++ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; ++ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=k[1]&0xffffff; a+=k[0]; break; ++ case 6 : b+=k[1]&0xffff; a+=k[0]; break; ++ case 5 : b+=k[1]&0xff; a+=k[0]; break; ++ case 4 : a+=k[0]; break; ++ case 3 : a+=k[0]&0xffffff; break; ++ case 2 : a+=k[0]&0xffff; break; ++ case 1 : a+=k[0]&0xff; break; ++ case 0 : return c; /* zero length strings require no mixing */ ++ } ++ ++#else /* make valgrind happy */ ++ ++ k8 = (const uint8_t *)k; ++ switch(length) ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ ++ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ ++ case 9 : c+=k8[8]; /* fall through */ ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ ++ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ ++ case 5 : b+=k8[4]; /* fall through */ ++ case 4 : a+=k[0]; break; ++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ ++ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ ++ case 1 : a+=k8[0]; break; ++ case 0 : return c; ++ } ++ ++#endif /* !valgrind */ ++ ++ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { ++ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ ++ const uint8_t *k8; ++ ++ /*--------------- all but last block: aligned reads and different mixing */ ++ while (length > 12) ++ { ++ a += k[0] + (((uint32_t)k[1])<<16); ++ b += k[2] + (((uint32_t)k[3])<<16); ++ c += k[4] + (((uint32_t)k[5])<<16); ++ mix(a,b,c); ++ length -= 12; ++ k += 6; ++ } ++ ++ /*----------------------------- handle the last (probably partial) block */ ++ k8 = (const uint8_t *)k; ++ switch(length) ++ { ++ case 12: c+=k[4]+(((uint32_t)k[5])<<16); ++ b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ ++ case 10: c+=k[4]; ++ b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 9 : c+=k8[8]; /* fall through */ ++ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ ++ case 6 : b+=k[2]; ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 5 : b+=k8[4]; /* fall through */ ++ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ ++ case 2 : a+=k[0]; ++ break; ++ case 1 : a+=k8[0]; ++ break; ++ case 0 : return c; /* zero length requires no mixing */ ++ } ++ ++ } else { /* need to read the key one byte at a time */ ++ const uint8_t *k = (const uint8_t *)key; ++ ++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += k[0]; ++ a += ((uint32_t)k[1])<<8; ++ a += ((uint32_t)k[2])<<16; ++ a += ((uint32_t)k[3])<<24; ++ b += k[4]; ++ b += ((uint32_t)k[5])<<8; ++ b += ((uint32_t)k[6])<<16; ++ b += ((uint32_t)k[7])<<24; ++ c += k[8]; ++ c += ((uint32_t)k[9])<<8; ++ c += ((uint32_t)k[10])<<16; ++ c += ((uint32_t)k[11])<<24; ++ mix(a,b,c); ++ length -= 12; ++ k += 12; ++ } ++ ++ /*-------------------------------- last block: affect all 32 bits of (c) */ ++ switch(length) /* all the case statements fall through */ ++ { ++ case 12: c+=((uint32_t)k[11])<<24; ++ case 11: c+=((uint32_t)k[10])<<16; ++ case 10: c+=((uint32_t)k[9])<<8; ++ case 9 : c+=k[8]; ++ case 8 : b+=((uint32_t)k[7])<<24; ++ case 7 : b+=((uint32_t)k[6])<<16; ++ case 6 : b+=((uint32_t)k[5])<<8; ++ case 5 : b+=k[4]; ++ case 4 : a+=((uint32_t)k[3])<<24; ++ case 3 : a+=((uint32_t)k[2])<<16; ++ case 2 : a+=((uint32_t)k[1])<<8; ++ case 1 : a+=k[0]; ++ break; ++ case 0 : return c; ++ } ++ } ++ ++ final(a,b,c); ++ return c; ++} ++ ++ ++/* ++ * hashlittle2: return 2 32-bit hash values ++ * ++ * This is identical to hashlittle(), except it returns two 32-bit hash ++ * values instead of just one. This is good enough for hash table ++ * lookup with 2^^64 buckets, or if you want a second hash if you're not ++ * happy with the first, or if you want a probably-unique 64-bit ID for ++ * the key. *pc is better mixed than *pb, so use *pc first. If you want ++ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". ++ */ ++void hashlittle2( ++ const void *key, /* the key to hash */ ++ size_t length, /* length of the key */ ++ uint32_t *pc, /* IN: primary initval, OUT: primary hash */ ++ uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ ++{ ++ uint32_t a,b,c; /* internal state */ ++ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ ++ ++ /* Set up the internal state */ ++ a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; ++ c += *pb; ++ ++ u.ptr = key; ++ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { ++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ ++#ifdef VALGRIND ++ const uint8_t *k8; ++#endif ++ ++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += k[0]; ++ b += k[1]; ++ c += k[2]; ++ mix(a,b,c); ++ length -= 12; ++ k += 3; ++ } ++ ++ /*----------------------------- handle the last (probably partial) block */ ++ /* ++ * "k[2]&0xffffff" actually reads beyond the end of the string, but ++ * then masks off the part it's not allowed to read. Because the ++ * string is aligned, the masked-off tail is in the same word as the ++ * rest of the string. Every machine with memory protection I've seen ++ * does it on word boundaries, so is OK with this. But VALGRIND will ++ * still catch it and complain. The masking trick does make the hash ++ * noticably faster for short strings (like English words). ++ */ ++#ifndef VALGRIND ++ ++ switch(length) ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; ++ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; ++ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=k[1]&0xffffff; a+=k[0]; break; ++ case 6 : b+=k[1]&0xffff; a+=k[0]; break; ++ case 5 : b+=k[1]&0xff; a+=k[0]; break; ++ case 4 : a+=k[0]; break; ++ case 3 : a+=k[0]&0xffffff; break; ++ case 2 : a+=k[0]&0xffff; break; ++ case 1 : a+=k[0]&0xff; break; ++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ ++ } ++ ++#else /* make valgrind happy */ ++ ++ k8 = (const uint8_t *)k; ++ switch(length) ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ ++ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ ++ case 9 : c+=k8[8]; /* fall through */ ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ ++ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ ++ case 5 : b+=k8[4]; /* fall through */ ++ case 4 : a+=k[0]; break; ++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ ++ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ ++ case 1 : a+=k8[0]; break; ++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ ++ } ++ ++#endif /* !valgrind */ ++ ++ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { ++ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ ++ const uint8_t *k8; ++ ++ /*--------------- all but last block: aligned reads and different mixing */ ++ while (length > 12) ++ { ++ a += k[0] + (((uint32_t)k[1])<<16); ++ b += k[2] + (((uint32_t)k[3])<<16); ++ c += k[4] + (((uint32_t)k[5])<<16); ++ mix(a,b,c); ++ length -= 12; ++ k += 6; ++ } ++ ++ /*----------------------------- handle the last (probably partial) block */ ++ k8 = (const uint8_t *)k; ++ switch(length) ++ { ++ case 12: c+=k[4]+(((uint32_t)k[5])<<16); ++ b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ ++ case 10: c+=k[4]; ++ b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 9 : c+=k8[8]; /* fall through */ ++ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ ++ case 6 : b+=k[2]; ++ a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 5 : b+=k8[4]; /* fall through */ ++ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); ++ break; ++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ ++ case 2 : a+=k[0]; ++ break; ++ case 1 : a+=k8[0]; ++ break; ++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ ++ } ++ ++ } else { /* need to read the key one byte at a time */ ++ const uint8_t *k = (const uint8_t *)key; ++ ++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += k[0]; ++ a += ((uint32_t)k[1])<<8; ++ a += ((uint32_t)k[2])<<16; ++ a += ((uint32_t)k[3])<<24; ++ b += k[4]; ++ b += ((uint32_t)k[5])<<8; ++ b += ((uint32_t)k[6])<<16; ++ b += ((uint32_t)k[7])<<24; ++ c += k[8]; ++ c += ((uint32_t)k[9])<<8; ++ c += ((uint32_t)k[10])<<16; ++ c += ((uint32_t)k[11])<<24; ++ mix(a,b,c); ++ length -= 12; ++ k += 12; ++ } ++ ++ /*-------------------------------- last block: affect all 32 bits of (c) */ ++ switch(length) /* all the case statements fall through */ ++ { ++ case 12: c+=((uint32_t)k[11])<<24; ++ case 11: c+=((uint32_t)k[10])<<16; ++ case 10: c+=((uint32_t)k[9])<<8; ++ case 9 : c+=k[8]; ++ case 8 : b+=((uint32_t)k[7])<<24; ++ case 7 : b+=((uint32_t)k[6])<<16; ++ case 6 : b+=((uint32_t)k[5])<<8; ++ case 5 : b+=k[4]; ++ case 4 : a+=((uint32_t)k[3])<<24; ++ case 3 : a+=((uint32_t)k[2])<<16; ++ case 2 : a+=((uint32_t)k[1])<<8; ++ case 1 : a+=k[0]; ++ break; ++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ ++ } ++ } ++ ++ final(a,b,c); ++ *pc=c; *pb=b; ++} ++ ++ ++ ++/* ++ * hashbig(): ++ * This is the same as hashword() on big-endian machines. It is different ++ * from hashlittle() on all machines. hashbig() takes advantage of ++ * big-endian byte ordering. ++ */ ++uint32_t hashbig( const void *key, size_t length, uint32_t initval) ++{ ++ uint32_t a,b,c; ++ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ ++ ++ /* Set up the internal state */ ++ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; ++ ++ u.ptr = key; ++ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { ++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ ++#ifdef VALGRIND ++ const uint8_t *k8; ++#endif ++ ++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += k[0]; ++ b += k[1]; ++ c += k[2]; ++ mix(a,b,c); ++ length -= 12; ++ k += 3; ++ } ++ ++ /*----------------------------- handle the last (probably partial) block */ ++ /* ++ * "k[2]<<8" actually reads beyond the end of the string, but ++ * then shifts out the part it's not allowed to read. Because the ++ * string is aligned, the illegal read is in the same word as the ++ * rest of the string. Every machine with memory protection I've seen ++ * does it on word boundaries, so is OK with this. But VALGRIND will ++ * still catch it and complain. The masking trick does make the hash ++ * noticably faster for short strings (like English words). ++ */ ++#ifndef VALGRIND ++ ++ switch(length) ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; ++ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; ++ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; ++ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; ++ case 5 : b+=k[1]&0xff000000; a+=k[0]; break; ++ case 4 : a+=k[0]; break; ++ case 3 : a+=k[0]&0xffffff00; break; ++ case 2 : a+=k[0]&0xffff0000; break; ++ case 1 : a+=k[0]&0xff000000; break; ++ case 0 : return c; /* zero length strings require no mixing */ ++ } ++ ++#else /* make valgrind happy */ ++ ++ k8 = (const uint8_t *)k; ++ switch(length) /* all the case statements fall through */ ++ { ++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; ++ case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ ++ case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ ++ case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ ++ case 8 : b+=k[1]; a+=k[0]; break; ++ case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ ++ case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ ++ case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ ++ case 4 : a+=k[0]; break; ++ case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ ++ case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ ++ case 1 : a+=((uint32_t)k8[0])<<24; break; ++ case 0 : return c; ++ } ++ ++#endif /* !VALGRIND */ ++ ++ } else { /* need to read the key one byte at a time */ ++ const uint8_t *k = (const uint8_t *)key; ++ ++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ ++ while (length > 12) ++ { ++ a += ((uint32_t)k[0])<<24; ++ a += ((uint32_t)k[1])<<16; ++ a += ((uint32_t)k[2])<<8; ++ a += ((uint32_t)k[3]); ++ b += ((uint32_t)k[4])<<24; ++ b += ((uint32_t)k[5])<<16; ++ b += ((uint32_t)k[6])<<8; ++ b += ((uint32_t)k[7]); ++ c += ((uint32_t)k[8])<<24; ++ c += ((uint32_t)k[9])<<16; ++ c += ((uint32_t)k[10])<<8; ++ c += ((uint32_t)k[11]); ++ mix(a,b,c); ++ length -= 12; ++ k += 12; ++ } ++ ++ /*-------------------------------- last block: affect all 32 bits of (c) */ ++ switch(length) /* all the case statements fall through */ ++ { ++ case 12: c+=k[11]; ++ case 11: c+=((uint32_t)k[10])<<8; ++ case 10: c+=((uint32_t)k[9])<<16; ++ case 9 : c+=((uint32_t)k[8])<<24; ++ case 8 : b+=k[7]; ++ case 7 : b+=((uint32_t)k[6])<<8; ++ case 6 : b+=((uint32_t)k[5])<<16; ++ case 5 : b+=((uint32_t)k[4])<<24; ++ case 4 : a+=k[3]; ++ case 3 : a+=((uint32_t)k[2])<<8; ++ case 2 : a+=((uint32_t)k[1])<<16; ++ case 1 : a+=((uint32_t)k[0])<<24; ++ break; ++ case 0 : return c; ++ } ++ } ++ ++ final(a,b,c); ++ return c; ++} ++ ++ ++#ifdef SELF_TEST ++ ++/* used for timings */ ++void driver1() ++{ ++ uint8_t buf[256]; ++ uint32_t i; ++ uint32_t h=0; ++ time_t a,z; ++ ++ time(&a); ++ for (i=0; i<256; ++i) buf[i] = 'x'; ++ for (i=0; i<1; ++i) ++ { ++ h = hashlittle(&buf[0],1,h); ++ } ++ time(&z); ++ if (z-a > 0) printf("time %d %.8x\n", z-a, h); ++} ++ ++/* check that every input bit changes every output bit half the time */ ++#define HASHSTATE 1 ++#define HASHLEN 1 ++#define MAXPAIR 60 ++#define MAXLEN 70 ++void driver2() ++{ ++ uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; ++ uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; ++ uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; ++ uint32_t x[HASHSTATE],y[HASHSTATE]; ++ uint32_t hlen; ++ ++ printf("No more than %d trials should ever be needed \n",MAXPAIR/2); ++ for (hlen=0; hlen < MAXLEN; ++hlen) ++ { ++ z=0; ++ for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ ++ { ++ for (j=0; j<8; ++j) /*------------------------ for each input bit, */ ++ { ++ for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */ ++ { ++ for (l=0; l<HASHSTATE; ++l) ++ e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); ++ ++ /*---- check that every output bit is affected by that input bit */ ++ for (k=0; k<MAXPAIR; k+=2) ++ { ++ uint32_t finished=1; ++ /* keys have one bit different */ ++ for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} ++ /* have a and b be two keys differing in only one bit */ ++ a[i] ^= (k<<j); ++ a[i] ^= (k>>(8-j)); ++ c[0] = hashlittle(a, hlen, m); ++ b[i] ^= ((k+1)<<j); ++ b[i] ^= ((k+1)>>(8-j)); ++ d[0] = hashlittle(b, hlen, m); ++ /* check every bit is 1, 0, set, and not set at least once */ ++ for (l=0; l<HASHSTATE; ++l) ++ { ++ e[l] &= (c[l]^d[l]); ++ f[l] &= ~(c[l]^d[l]); ++ g[l] &= c[l]; ++ h[l] &= ~c[l]; ++ x[l] &= d[l]; ++ y[l] &= ~d[l]; ++ if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; ++ } ++ if (finished) break; ++ } ++ if (k>z) z=k; ++ if (k==MAXPAIR) ++ { ++ printf("Some bit didn't change: "); ++ printf("%.8x %.8x %.8x %.8x %.8x %.8x ", ++ e[0],f[0],g[0],h[0],x[0],y[0]); ++ printf("i %d j %d m %d len %d\n", i, j, m, hlen); ++ } ++ if (z==MAXPAIR) goto done; ++ } ++ } ++ } ++ done: ++ if (z < MAXPAIR) ++ { ++ printf("Mix success %2d bytes %2d initvals ",i,m); ++ printf("required %d trials\n", z/2); ++ } ++ } ++ printf("\n"); ++} ++ ++/* Check for reading beyond the end of the buffer and alignment problems */ ++void driver3() ++{ ++ uint8_t buf[MAXLEN+20], *b; ++ uint32_t len; ++ uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; ++ uint32_t h; ++ uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; ++ uint32_t i; ++ uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; ++ uint32_t j; ++ uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; ++ uint32_t ref,x,y; ++ uint8_t *p; ++ ++ printf("Endianness. These lines should all be the same (for values filled in):\n"); ++ printf("%.8x %.8x %.8x\n", ++ hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), ++ hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), ++ hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); ++ p = q; ++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", ++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), ++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), ++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), ++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), ++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), ++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); ++ p = &qq[1]; ++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", ++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), ++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), ++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), ++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), ++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), ++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); ++ p = &qqq[2]; ++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", ++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), ++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), ++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), ++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), ++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), ++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); ++ p = &qqqq[3]; ++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", ++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), ++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), ++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), ++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), ++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), ++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); ++ printf("\n"); ++ ++ /* check that hashlittle2 and hashlittle produce the same results */ ++ i=47; j=0; ++ hashlittle2(q, sizeof(q), &i, &j); ++ if (hashlittle(q, sizeof(q), 47) != i) ++ printf("hashlittle2 and hashlittle mismatch\n"); ++ ++ /* check that hashword2 and hashword produce the same results */ ++ len = 0xdeadbeef; ++ i=47, j=0; ++ hashword2(&len, 1, &i, &j); ++ if (hashword(&len, 1, 47) != i) ++ printf("hashword2 and hashword mismatch %x %x\n", ++ i, hashword(&len, 1, 47)); ++ ++ /* check hashlittle doesn't read before or after the ends of the string */ ++ for (h=0, b=buf+1; h<8; ++h, ++b) ++ { ++ for (i=0; i<MAXLEN; ++i) ++ { ++ len = i; ++ for (j=0; j<i; ++j) *(b+j)=0; ++ ++ /* these should all be equal */ ++ ref = hashlittle(b, len, (uint32_t)1); ++ *(b+i)=(uint8_t)~0; ++ *(b-1)=(uint8_t)~0; ++ x = hashlittle(b, len, (uint32_t)1); ++ y = hashlittle(b, len, (uint32_t)1); ++ if ((ref != x) || (ref != y)) ++ { ++ printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, ++ h, i); ++ } ++ } ++ } ++} ++ ++/* check for problems with nulls */ ++ void driver4() ++{ ++ uint8_t buf[1]; ++ uint32_t h,i,state[HASHSTATE]; ++ ++ ++ buf[0] = ~0; ++ for (i=0; i<HASHSTATE; ++i) state[i] = 1; ++ printf("These should all be different\n"); ++ for (i=0, h=0; i<8; ++i) ++ { ++ h = hashlittle(buf, 0, h); ++ printf("%2ld 0-byte strings, hash is %.8x\n", i, h); ++ } ++} ++ ++void driver5() ++{ ++ uint32_t b,c; ++ b=0, c=0, hashlittle2("", 0, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */ ++ b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */ ++ b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */ ++ b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */ ++ b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */ ++ b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b); ++ printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */ ++ c = hashlittle("Four score and seven years ago", 30, 0); ++ printf("hash is %.8lx\n", c); /* 17770551 */ ++ c = hashlittle("Four score and seven years ago", 30, 1); ++ printf("hash is %.8lx\n", c); /* cd628161 */ ++} ++ ++ ++int main() ++{ ++ driver1(); /* test that the key is hashed: used for timings */ ++ driver2(); /* test that whole key is hashed thoroughly */ ++ driver3(); /* test that nothing but the key is hashed */ ++ driver4(); /* test hashing multiple buffers (all buffers are null) */ ++ driver5(); /* test the hash against known vectors */ ++ return 1; ++} ++ ++#endif /* SELF_TEST */ +diff -Nru apt-0.7.20.2/apt-pkg/makefile apt-0.7.20.2+iPhone/apt-pkg/makefile +--- apt-0.7.20.2/apt-pkg/makefile 2009-04-27 10:23:14.000000000 +0000 ++++ apt-0.7.20.2+iPhone/apt-pkg/makefile 2010-02-22 08:34:47.000000000 +0000 +@@ -28,7 +28,7 @@ + md5.h crc-16.h cdromutl.h strutl.h sptr.h sha1.h sha256.h hashes.h + + # Source code for the core main library +-SOURCE+= pkgcache.cc version.cc depcache.cc \ ++SOURCE+= pkgcache.cc version.cc depcache.cc lookup3.cc \ + orderlist.cc tagfile.cc sourcelist.cc packagemanager.cc \ + pkgrecords.cc algorithms.cc acquire.cc\ + acquire-worker.cc acquire-method.cc init.cc clean.cc \ +diff -Nru apt-0.7.20.2/apt-pkg/makefile.orig apt-0.7.20.2+iPhone/apt-pkg/makefile.orig +--- apt-0.7.20.2/apt-pkg/makefile.orig 2009-04-27 10:23:14.000000000 +0000 ++++ apt-0.7.20.2+iPhone/apt-pkg/makefile.orig 2010-02-22 08:34:47.000000000 +0000 +@@ -28,7 +28,7 @@ + md5.h crc-16.h cdromutl.h strutl.h sptr.h sha1.h sha256.h hashes.h + + # Source code for the core main library +-SOURCE+= pkgcache.cc version.cc depcache.cc \ ++SOURCE+= pkgcache.cc version.cc depcache.cc lookup3.cc \ + orderlist.cc tagfile.cc sourcelist.cc packagemanager.cc \ + pkgrecords.cc algorithms.cc acquire.cc\ + acquire-worker.cc acquire-method.cc init.cc clean.cc \ +diff -Nru apt-0.7.20.2/apt-pkg/pkgcachegen.cc apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.cc +--- apt-0.7.20.2/apt-pkg/pkgcachegen.cc 2009-04-27 10:23:14.000000000 +0000 ++++ apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.cc 2010-02-22 08:50:54.000000000 +0000 +@@ -35,6 +35,7 @@ + #include <system.h> + /*}}}*/ + typedef vector<pkgIndexFile *>::iterator FileIterator; ++uint32_t hashlittle( const void *key, size_t length, uint32_t initval); + + // CacheGenerator::pkgCacheGenerator - Constructor /*{{{*/ + // --------------------------------------------------------------------- +@@ -635,31 +639,23 @@ + unsigned long pkgCacheGenerator::WriteUniqString(const char *S, + unsigned int Size) + { +- /* We use a very small transient hash table here, this speeds up generation +- by a fair amount on slower machines */ +- pkgCache::StringItem *&Bucket = UniqHash[(S[0]*5 + S[1]) % _count(UniqHash)]; +- if (Bucket != 0 && +- stringcmp(S,S+Size,Cache.StrP + Bucket->String) == 0) +- return Bucket->String; ++ uint32_t hash = hashlittle(S, Size, 0xdeadbeef); ++ ++ /* We use a VERY LARGE INTRANSIENT hash table here, this speeds up generation ++ by AN INSANE amount on ALL machines */ ++ pkgCache::StringItem **Bucket2; ++ while (true) { ++ Bucket2 = &UniqHash[hash % _count(UniqHash)]; ++ if (*Bucket2 == NULL) ++ break; ++ if (stringcmp(S,S+Size,Cache.StrP + (*Bucket2)->String) == 0) ++ return (*Bucket2)->String; ++ hash += 7; ++ } + +- // Search for an insertion point ++ pkgCache::StringItem *&Bucket = *Bucket2; + pkgCache::StringItem *I = Cache.StringItemP + Cache.HeaderP->StringList; +- int Res = 1; + map_ptrloc *Last = &Cache.HeaderP->StringList; +- for (; I != Cache.StringItemP; Last = &I->NextItem, +- I = Cache.StringItemP + I->NextItem) +- { +- Res = stringcmp(S,S+Size,Cache.StrP + I->String); +- if (Res >= 0) +- break; +- } +- +- // Match +- if (Res == 0) +- { +- Bucket = I; +- return I->String; +- } + + // Get a structure + unsigned long Item = Map.Allocate(sizeof(pkgCache::StringItem)); +diff -Nru apt-0.7.20.2/apt-pkg/pkgcachegen.h apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.h +--- apt-0.7.20.2/apt-pkg/pkgcachegen.h 2009-04-27 10:23:14.000000000 +0000 ++++ apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.h 2010-02-22 08:49:41.000000000 +0000 +@@ -32,7 +32,7 @@ + { + private: + +- pkgCache::StringItem *UniqHash[26]; ++ pkgCache::StringItem *UniqHash[32768*2]; + + public: + |