summaryrefslogtreecommitdiff
path: root/data
diff options
context:
space:
mode:
authorJay Freeman <saurik@saurik.com>2010-02-22 09:02:11 +0000
committerJay Freeman <saurik@saurik.com>2010-02-22 09:02:11 +0000
commit476f7c611e66acb08094fda54540d116b62d52cb (patch)
tree5914ee38cef6f2af87038c7b419d427a77113b66 /data
parent7de713525365420eaf630a97cdfac8563f5eb003 (diff)
I feel... vindicated?
git-svn-id: http://svn.telesphoreo.org/trunk@698 514c082c-b64e-11dc-b46d-3d985efe055d
Diffstat (limited to 'data')
-rw-r--r--data/_apt7/vindication.diff1104
1 files changed, 1104 insertions, 0 deletions
diff --git a/data/_apt7/vindication.diff b/data/_apt7/vindication.diff
new file mode 100644
index 000000000..812aff9e3
--- /dev/null
+++ b/data/_apt7/vindication.diff
@@ -0,0 +1,1104 @@
+diff -Nru apt-0.7.20.2/apt-pkg/lookup3.cc apt-0.7.20.2+iPhone/apt-pkg/lookup3.cc
+--- apt-0.7.20.2/apt-pkg/lookup3.cc 1970-01-01 00:00:00.000000000 +0000
++++ apt-0.7.20.2+iPhone/apt-pkg/lookup3.cc 2010-02-22 08:36:54.000000000 +0000
+@@ -0,0 +1,1007 @@
++/*
++-------------------------------------------------------------------------------
++lookup3.c, by Bob Jenkins, May 2006, Public Domain.
++
++These are functions for producing 32-bit hashes for hash table lookup.
++hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
++are externally useful functions. Routines to test the hash are included
++if SELF_TEST is defined. You can use this free for any purpose. It's in
++the public domain. It has no warranty.
++
++You probably want to use hashlittle(). hashlittle() and hashbig()
++hash byte arrays. hashlittle() is is faster than hashbig() on
++little-endian machines. Intel and AMD are little-endian machines.
++On second thought, you probably want hashlittle2(), which is identical to
++hashlittle() except it returns two 32-bit hashes for the price of one.
++You could implement hashbig2() if you wanted but I haven't bothered here.
++
++If you want to find a hash of, say, exactly 7 integers, do
++ a = i1; b = i2; c = i3;
++ mix(a,b,c);
++ a += i4; b += i5; c += i6;
++ mix(a,b,c);
++ a += i7;
++ final(a,b,c);
++then use c as the hash value. If you have a variable length array of
++4-byte integers to hash, use hashword(). If you have a byte array (like
++a character string), use hashlittle(). If you have several byte arrays, or
++a mix of things, see the comments above hashlittle().
++
++Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
++then mix those integers. This is fast (you can do a lot more thorough
++mixing with 12*3 instructions on 3 integers than you can with 3 instructions
++on 1 byte), but shoehorning those bytes into integers efficiently is messy.
++-------------------------------------------------------------------------------
++*/
++#undef SELF_TEST
++
++#include <stdio.h> /* defines printf for tests */
++#include <time.h> /* defines time_t for timings in the test */
++#include <stdint.h> /* defines uint32_t etc */
++#include <sys/param.h> /* attempt to define endianness */
++#ifdef linux
++# include <endian.h> /* attempt to define endianness */
++#endif
++
++/*
++ * My best guess at if you are big-endian or little-endian. This may
++ * need adjustment.
++ */
++#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
++ __BYTE_ORDER == __LITTLE_ENDIAN) || \
++ (defined(i386) || defined(__i386__) || defined(__i486__) || \
++ defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
++# define HASH_LITTLE_ENDIAN 1
++# define HASH_BIG_ENDIAN 0
++#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
++ __BYTE_ORDER == __BIG_ENDIAN) || \
++ (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
++# define HASH_LITTLE_ENDIAN 0
++# define HASH_BIG_ENDIAN 1
++#else
++# define HASH_LITTLE_ENDIAN 0
++# define HASH_BIG_ENDIAN 0
++#endif
++
++#define hashsize(n) ((uint32_t)1<<(n))
++#define hashmask(n) (hashsize(n)-1)
++#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
++
++/*
++-------------------------------------------------------------------------------
++mix -- mix 3 32-bit values reversibly.
++
++This is reversible, so any information in (a,b,c) before mix() is
++still in (a,b,c) after mix().
++
++If four pairs of (a,b,c) inputs are run through mix(), or through
++mix() in reverse, there are at least 32 bits of the output that
++are sometimes the same for one pair and different for another pair.
++This was tested for:
++* pairs that differed by one bit, by two bits, in any combination
++ of top bits of (a,b,c), or in any combination of bottom bits of
++ (a,b,c).
++* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
++ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
++ is commonly produced by subtraction) look like a single 1-bit
++ difference.
++* the base values were pseudorandom, all zero but one bit set, or
++ all zero plus a counter that starts at zero.
++
++Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
++satisfy this are
++ 4 6 8 16 19 4
++ 9 15 3 18 27 15
++ 14 9 3 7 17 3
++Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
++for "differ" defined as + with a one-bit base and a two-bit delta. I
++used http://burtleburtle.net/bob/hash/avalanche.html to choose
++the operations, constants, and arrangements of the variables.
++
++This does not achieve avalanche. There are input bits of (a,b,c)
++that fail to affect some output bits of (a,b,c), especially of a. The
++most thoroughly mixed value is c, but it doesn't really even achieve
++avalanche in c.
++
++This allows some parallelism. Read-after-writes are good at doubling
++the number of bits affected, so the goal of mixing pulls in the opposite
++direction as the goal of parallelism. I did what I could. Rotates
++seem to cost as much as shifts on every machine I could lay my hands
++on, and rotates are much kinder to the top and bottom bits, so I used
++rotates.
++-------------------------------------------------------------------------------
++*/
++#define mix(a,b,c) \
++{ \
++ a -= c; a ^= rot(c, 4); c += b; \
++ b -= a; b ^= rot(a, 6); a += c; \
++ c -= b; c ^= rot(b, 8); b += a; \
++ a -= c; a ^= rot(c,16); c += b; \
++ b -= a; b ^= rot(a,19); a += c; \
++ c -= b; c ^= rot(b, 4); b += a; \
++}
++
++/*
++-------------------------------------------------------------------------------
++final -- final mixing of 3 32-bit values (a,b,c) into c
++
++Pairs of (a,b,c) values differing in only a few bits will usually
++produce values of c that look totally different. This was tested for
++* pairs that differed by one bit, by two bits, in any combination
++ of top bits of (a,b,c), or in any combination of bottom bits of
++ (a,b,c).
++* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
++ the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
++ is commonly produced by subtraction) look like a single 1-bit
++ difference.
++* the base values were pseudorandom, all zero but one bit set, or
++ all zero plus a counter that starts at zero.
++
++These constants passed:
++ 14 11 25 16 4 14 24
++ 12 14 25 16 4 14 24
++and these came close:
++ 4 8 15 26 3 22 24
++ 10 8 15 26 3 22 24
++ 11 8 15 26 3 22 24
++-------------------------------------------------------------------------------
++*/
++#define final(a,b,c) \
++{ \
++ c ^= b; c -= rot(b,14); \
++ a ^= c; a -= rot(c,11); \
++ b ^= a; b -= rot(a,25); \
++ c ^= b; c -= rot(b,16); \
++ a ^= c; a -= rot(c,4); \
++ b ^= a; b -= rot(a,14); \
++ c ^= b; c -= rot(b,24); \
++}
++
++/*
++--------------------------------------------------------------------
++ This works on all machines. To be useful, it requires
++ -- that the key be an array of uint32_t's, and
++ -- that the length be the number of uint32_t's in the key
++
++ The function hashword() is identical to hashlittle() on little-endian
++ machines, and identical to hashbig() on big-endian machines,
++ except that the length has to be measured in uint32_ts rather than in
++ bytes. hashlittle() is more complicated than hashword() only because
++ hashlittle() has to dance around fitting the key bytes into registers.
++--------------------------------------------------------------------
++*/
++uint32_t hashword(
++const uint32_t *k, /* the key, an array of uint32_t values */
++size_t length, /* the length of the key, in uint32_ts */
++uint32_t initval) /* the previous hash, or an arbitrary value */
++{
++ uint32_t a,b,c;
++
++ /* Set up the internal state */
++ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
++
++ /*------------------------------------------------- handle most of the key */
++ while (length > 3)
++ {
++ a += k[0];
++ b += k[1];
++ c += k[2];
++ mix(a,b,c);
++ length -= 3;
++ k += 3;
++ }
++
++ /*------------------------------------------- handle the last 3 uint32_t's */
++ switch(length) /* all the case statements fall through */
++ {
++ case 3 : c+=k[2];
++ case 2 : b+=k[1];
++ case 1 : a+=k[0];
++ final(a,b,c);
++ case 0: /* case 0: nothing left to add */
++ break;
++ }
++ /*------------------------------------------------------ report the result */
++ return c;
++}
++
++
++/*
++--------------------------------------------------------------------
++hashword2() -- same as hashword(), but take two seeds and return two
++32-bit values. pc and pb must both be nonnull, and *pc and *pb must
++both be initialized with seeds. If you pass in (*pb)==0, the output
++(*pc) will be the same as the return value from hashword().
++--------------------------------------------------------------------
++*/
++void hashword2 (
++const uint32_t *k, /* the key, an array of uint32_t values */
++size_t length, /* the length of the key, in uint32_ts */
++uint32_t *pc, /* IN: seed OUT: primary hash value */
++uint32_t *pb) /* IN: more seed OUT: secondary hash value */
++{
++ uint32_t a,b,c;
++
++ /* Set up the internal state */
++ a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
++ c += *pb;
++
++ /*------------------------------------------------- handle most of the key */
++ while (length > 3)
++ {
++ a += k[0];
++ b += k[1];
++ c += k[2];
++ mix(a,b,c);
++ length -= 3;
++ k += 3;
++ }
++
++ /*------------------------------------------- handle the last 3 uint32_t's */
++ switch(length) /* all the case statements fall through */
++ {
++ case 3 : c+=k[2];
++ case 2 : b+=k[1];
++ case 1 : a+=k[0];
++ final(a,b,c);
++ case 0: /* case 0: nothing left to add */
++ break;
++ }
++ /*------------------------------------------------------ report the result */
++ *pc=c; *pb=b;
++}
++
++
++/*
++-------------------------------------------------------------------------------
++hashlittle() -- hash a variable-length key into a 32-bit value
++ k : the key (the unaligned variable-length array of bytes)
++ length : the length of the key, counting by bytes
++ initval : can be any 4-byte value
++Returns a 32-bit value. Every bit of the key affects every bit of
++the return value. Two keys differing by one or two bits will have
++totally different hash values.
++
++The best hash table sizes are powers of 2. There is no need to do
++mod a prime (mod is sooo slow!). If you need less than 32 bits,
++use a bitmask. For example, if you need only 10 bits, do
++ h = (h & hashmask(10));
++In which case, the hash table should have hashsize(10) elements.
++
++If you are hashing n strings (uint8_t **)k, do it like this:
++ for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
++
++By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
++code any way you wish, private, educational, or commercial. It's free.
++
++Use for hash table lookup, or anything where one collision in 2^^32 is
++acceptable. Do NOT use for cryptographic purposes.
++-------------------------------------------------------------------------------
++*/
++
++uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
++{
++ uint32_t a,b,c; /* internal state */
++ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
++
++ /* Set up the internal state */
++ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
++
++ u.ptr = key;
++ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
++#ifdef VALGRIND
++ const uint8_t *k8;
++#endif
++
++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += k[0];
++ b += k[1];
++ c += k[2];
++ mix(a,b,c);
++ length -= 12;
++ k += 3;
++ }
++
++ /*----------------------------- handle the last (probably partial) block */
++ /*
++ * "k[2]&0xffffff" actually reads beyond the end of the string, but
++ * then masks off the part it's not allowed to read. Because the
++ * string is aligned, the masked-off tail is in the same word as the
++ * rest of the string. Every machine with memory protection I've seen
++ * does it on word boundaries, so is OK with this. But VALGRIND will
++ * still catch it and complain. The masking trick does make the hash
++ * noticably faster for short strings (like English words).
++ */
++#ifndef VALGRIND
++
++ switch(length)
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
++ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
++ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
++ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
++ case 5 : b+=k[1]&0xff; a+=k[0]; break;
++ case 4 : a+=k[0]; break;
++ case 3 : a+=k[0]&0xffffff; break;
++ case 2 : a+=k[0]&0xffff; break;
++ case 1 : a+=k[0]&0xff; break;
++ case 0 : return c; /* zero length strings require no mixing */
++ }
++
++#else /* make valgrind happy */
++
++ k8 = (const uint8_t *)k;
++ switch(length)
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
++ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
++ case 9 : c+=k8[8]; /* fall through */
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
++ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
++ case 5 : b+=k8[4]; /* fall through */
++ case 4 : a+=k[0]; break;
++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
++ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
++ case 1 : a+=k8[0]; break;
++ case 0 : return c;
++ }
++
++#endif /* !valgrind */
++
++ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
++ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
++ const uint8_t *k8;
++
++ /*--------------- all but last block: aligned reads and different mixing */
++ while (length > 12)
++ {
++ a += k[0] + (((uint32_t)k[1])<<16);
++ b += k[2] + (((uint32_t)k[3])<<16);
++ c += k[4] + (((uint32_t)k[5])<<16);
++ mix(a,b,c);
++ length -= 12;
++ k += 6;
++ }
++
++ /*----------------------------- handle the last (probably partial) block */
++ k8 = (const uint8_t *)k;
++ switch(length)
++ {
++ case 12: c+=k[4]+(((uint32_t)k[5])<<16);
++ b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
++ case 10: c+=k[4];
++ b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 9 : c+=k8[8]; /* fall through */
++ case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
++ case 6 : b+=k[2];
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 5 : b+=k8[4]; /* fall through */
++ case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
++ case 2 : a+=k[0];
++ break;
++ case 1 : a+=k8[0];
++ break;
++ case 0 : return c; /* zero length requires no mixing */
++ }
++
++ } else { /* need to read the key one byte at a time */
++ const uint8_t *k = (const uint8_t *)key;
++
++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += k[0];
++ a += ((uint32_t)k[1])<<8;
++ a += ((uint32_t)k[2])<<16;
++ a += ((uint32_t)k[3])<<24;
++ b += k[4];
++ b += ((uint32_t)k[5])<<8;
++ b += ((uint32_t)k[6])<<16;
++ b += ((uint32_t)k[7])<<24;
++ c += k[8];
++ c += ((uint32_t)k[9])<<8;
++ c += ((uint32_t)k[10])<<16;
++ c += ((uint32_t)k[11])<<24;
++ mix(a,b,c);
++ length -= 12;
++ k += 12;
++ }
++
++ /*-------------------------------- last block: affect all 32 bits of (c) */
++ switch(length) /* all the case statements fall through */
++ {
++ case 12: c+=((uint32_t)k[11])<<24;
++ case 11: c+=((uint32_t)k[10])<<16;
++ case 10: c+=((uint32_t)k[9])<<8;
++ case 9 : c+=k[8];
++ case 8 : b+=((uint32_t)k[7])<<24;
++ case 7 : b+=((uint32_t)k[6])<<16;
++ case 6 : b+=((uint32_t)k[5])<<8;
++ case 5 : b+=k[4];
++ case 4 : a+=((uint32_t)k[3])<<24;
++ case 3 : a+=((uint32_t)k[2])<<16;
++ case 2 : a+=((uint32_t)k[1])<<8;
++ case 1 : a+=k[0];
++ break;
++ case 0 : return c;
++ }
++ }
++
++ final(a,b,c);
++ return c;
++}
++
++
++/*
++ * hashlittle2: return 2 32-bit hash values
++ *
++ * This is identical to hashlittle(), except it returns two 32-bit hash
++ * values instead of just one. This is good enough for hash table
++ * lookup with 2^^64 buckets, or if you want a second hash if you're not
++ * happy with the first, or if you want a probably-unique 64-bit ID for
++ * the key. *pc is better mixed than *pb, so use *pc first. If you want
++ * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
++ */
++void hashlittle2(
++ const void *key, /* the key to hash */
++ size_t length, /* length of the key */
++ uint32_t *pc, /* IN: primary initval, OUT: primary hash */
++ uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
++{
++ uint32_t a,b,c; /* internal state */
++ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
++
++ /* Set up the internal state */
++ a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
++ c += *pb;
++
++ u.ptr = key;
++ if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
++#ifdef VALGRIND
++ const uint8_t *k8;
++#endif
++
++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += k[0];
++ b += k[1];
++ c += k[2];
++ mix(a,b,c);
++ length -= 12;
++ k += 3;
++ }
++
++ /*----------------------------- handle the last (probably partial) block */
++ /*
++ * "k[2]&0xffffff" actually reads beyond the end of the string, but
++ * then masks off the part it's not allowed to read. Because the
++ * string is aligned, the masked-off tail is in the same word as the
++ * rest of the string. Every machine with memory protection I've seen
++ * does it on word boundaries, so is OK with this. But VALGRIND will
++ * still catch it and complain. The masking trick does make the hash
++ * noticably faster for short strings (like English words).
++ */
++#ifndef VALGRIND
++
++ switch(length)
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
++ case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
++ case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
++ case 6 : b+=k[1]&0xffff; a+=k[0]; break;
++ case 5 : b+=k[1]&0xff; a+=k[0]; break;
++ case 4 : a+=k[0]; break;
++ case 3 : a+=k[0]&0xffffff; break;
++ case 2 : a+=k[0]&0xffff; break;
++ case 1 : a+=k[0]&0xff; break;
++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
++ }
++
++#else /* make valgrind happy */
++
++ k8 = (const uint8_t *)k;
++ switch(length)
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
++ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
++ case 9 : c+=k8[8]; /* fall through */
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
++ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
++ case 5 : b+=k8[4]; /* fall through */
++ case 4 : a+=k[0]; break;
++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
++ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
++ case 1 : a+=k8[0]; break;
++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
++ }
++
++#endif /* !valgrind */
++
++ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
++ const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
++ const uint8_t *k8;
++
++ /*--------------- all but last block: aligned reads and different mixing */
++ while (length > 12)
++ {
++ a += k[0] + (((uint32_t)k[1])<<16);
++ b += k[2] + (((uint32_t)k[3])<<16);
++ c += k[4] + (((uint32_t)k[5])<<16);
++ mix(a,b,c);
++ length -= 12;
++ k += 6;
++ }
++
++ /*----------------------------- handle the last (probably partial) block */
++ k8 = (const uint8_t *)k;
++ switch(length)
++ {
++ case 12: c+=k[4]+(((uint32_t)k[5])<<16);
++ b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
++ case 10: c+=k[4];
++ b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 9 : c+=k8[8]; /* fall through */
++ case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
++ case 6 : b+=k[2];
++ a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 5 : b+=k8[4]; /* fall through */
++ case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
++ break;
++ case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
++ case 2 : a+=k[0];
++ break;
++ case 1 : a+=k8[0];
++ break;
++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
++ }
++
++ } else { /* need to read the key one byte at a time */
++ const uint8_t *k = (const uint8_t *)key;
++
++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += k[0];
++ a += ((uint32_t)k[1])<<8;
++ a += ((uint32_t)k[2])<<16;
++ a += ((uint32_t)k[3])<<24;
++ b += k[4];
++ b += ((uint32_t)k[5])<<8;
++ b += ((uint32_t)k[6])<<16;
++ b += ((uint32_t)k[7])<<24;
++ c += k[8];
++ c += ((uint32_t)k[9])<<8;
++ c += ((uint32_t)k[10])<<16;
++ c += ((uint32_t)k[11])<<24;
++ mix(a,b,c);
++ length -= 12;
++ k += 12;
++ }
++
++ /*-------------------------------- last block: affect all 32 bits of (c) */
++ switch(length) /* all the case statements fall through */
++ {
++ case 12: c+=((uint32_t)k[11])<<24;
++ case 11: c+=((uint32_t)k[10])<<16;
++ case 10: c+=((uint32_t)k[9])<<8;
++ case 9 : c+=k[8];
++ case 8 : b+=((uint32_t)k[7])<<24;
++ case 7 : b+=((uint32_t)k[6])<<16;
++ case 6 : b+=((uint32_t)k[5])<<8;
++ case 5 : b+=k[4];
++ case 4 : a+=((uint32_t)k[3])<<24;
++ case 3 : a+=((uint32_t)k[2])<<16;
++ case 2 : a+=((uint32_t)k[1])<<8;
++ case 1 : a+=k[0];
++ break;
++ case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
++ }
++ }
++
++ final(a,b,c);
++ *pc=c; *pb=b;
++}
++
++
++
++/*
++ * hashbig():
++ * This is the same as hashword() on big-endian machines. It is different
++ * from hashlittle() on all machines. hashbig() takes advantage of
++ * big-endian byte ordering.
++ */
++uint32_t hashbig( const void *key, size_t length, uint32_t initval)
++{
++ uint32_t a,b,c;
++ union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
++
++ /* Set up the internal state */
++ a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
++
++ u.ptr = key;
++ if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
++ const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
++#ifdef VALGRIND
++ const uint8_t *k8;
++#endif
++
++ /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += k[0];
++ b += k[1];
++ c += k[2];
++ mix(a,b,c);
++ length -= 12;
++ k += 3;
++ }
++
++ /*----------------------------- handle the last (probably partial) block */
++ /*
++ * "k[2]<<8" actually reads beyond the end of the string, but
++ * then shifts out the part it's not allowed to read. Because the
++ * string is aligned, the illegal read is in the same word as the
++ * rest of the string. Every machine with memory protection I've seen
++ * does it on word boundaries, so is OK with this. But VALGRIND will
++ * still catch it and complain. The masking trick does make the hash
++ * noticably faster for short strings (like English words).
++ */
++#ifndef VALGRIND
++
++ switch(length)
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
++ case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
++ case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
++ case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
++ case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
++ case 4 : a+=k[0]; break;
++ case 3 : a+=k[0]&0xffffff00; break;
++ case 2 : a+=k[0]&0xffff0000; break;
++ case 1 : a+=k[0]&0xff000000; break;
++ case 0 : return c; /* zero length strings require no mixing */
++ }
++
++#else /* make valgrind happy */
++
++ k8 = (const uint8_t *)k;
++ switch(length) /* all the case statements fall through */
++ {
++ case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
++ case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
++ case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
++ case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
++ case 8 : b+=k[1]; a+=k[0]; break;
++ case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
++ case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
++ case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
++ case 4 : a+=k[0]; break;
++ case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
++ case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
++ case 1 : a+=((uint32_t)k8[0])<<24; break;
++ case 0 : return c;
++ }
++
++#endif /* !VALGRIND */
++
++ } else { /* need to read the key one byte at a time */
++ const uint8_t *k = (const uint8_t *)key;
++
++ /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
++ while (length > 12)
++ {
++ a += ((uint32_t)k[0])<<24;
++ a += ((uint32_t)k[1])<<16;
++ a += ((uint32_t)k[2])<<8;
++ a += ((uint32_t)k[3]);
++ b += ((uint32_t)k[4])<<24;
++ b += ((uint32_t)k[5])<<16;
++ b += ((uint32_t)k[6])<<8;
++ b += ((uint32_t)k[7]);
++ c += ((uint32_t)k[8])<<24;
++ c += ((uint32_t)k[9])<<16;
++ c += ((uint32_t)k[10])<<8;
++ c += ((uint32_t)k[11]);
++ mix(a,b,c);
++ length -= 12;
++ k += 12;
++ }
++
++ /*-------------------------------- last block: affect all 32 bits of (c) */
++ switch(length) /* all the case statements fall through */
++ {
++ case 12: c+=k[11];
++ case 11: c+=((uint32_t)k[10])<<8;
++ case 10: c+=((uint32_t)k[9])<<16;
++ case 9 : c+=((uint32_t)k[8])<<24;
++ case 8 : b+=k[7];
++ case 7 : b+=((uint32_t)k[6])<<8;
++ case 6 : b+=((uint32_t)k[5])<<16;
++ case 5 : b+=((uint32_t)k[4])<<24;
++ case 4 : a+=k[3];
++ case 3 : a+=((uint32_t)k[2])<<8;
++ case 2 : a+=((uint32_t)k[1])<<16;
++ case 1 : a+=((uint32_t)k[0])<<24;
++ break;
++ case 0 : return c;
++ }
++ }
++
++ final(a,b,c);
++ return c;
++}
++
++
++#ifdef SELF_TEST
++
++/* used for timings */
++void driver1()
++{
++ uint8_t buf[256];
++ uint32_t i;
++ uint32_t h=0;
++ time_t a,z;
++
++ time(&a);
++ for (i=0; i<256; ++i) buf[i] = 'x';
++ for (i=0; i<1; ++i)
++ {
++ h = hashlittle(&buf[0],1,h);
++ }
++ time(&z);
++ if (z-a > 0) printf("time %d %.8x\n", z-a, h);
++}
++
++/* check that every input bit changes every output bit half the time */
++#define HASHSTATE 1
++#define HASHLEN 1
++#define MAXPAIR 60
++#define MAXLEN 70
++void driver2()
++{
++ uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
++ uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
++ uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
++ uint32_t x[HASHSTATE],y[HASHSTATE];
++ uint32_t hlen;
++
++ printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
++ for (hlen=0; hlen < MAXLEN; ++hlen)
++ {
++ z=0;
++ for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
++ {
++ for (j=0; j<8; ++j) /*------------------------ for each input bit, */
++ {
++ for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
++ {
++ for (l=0; l<HASHSTATE; ++l)
++ e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
++
++ /*---- check that every output bit is affected by that input bit */
++ for (k=0; k<MAXPAIR; k+=2)
++ {
++ uint32_t finished=1;
++ /* keys have one bit different */
++ for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
++ /* have a and b be two keys differing in only one bit */
++ a[i] ^= (k<<j);
++ a[i] ^= (k>>(8-j));
++ c[0] = hashlittle(a, hlen, m);
++ b[i] ^= ((k+1)<<j);
++ b[i] ^= ((k+1)>>(8-j));
++ d[0] = hashlittle(b, hlen, m);
++ /* check every bit is 1, 0, set, and not set at least once */
++ for (l=0; l<HASHSTATE; ++l)
++ {
++ e[l] &= (c[l]^d[l]);
++ f[l] &= ~(c[l]^d[l]);
++ g[l] &= c[l];
++ h[l] &= ~c[l];
++ x[l] &= d[l];
++ y[l] &= ~d[l];
++ if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
++ }
++ if (finished) break;
++ }
++ if (k>z) z=k;
++ if (k==MAXPAIR)
++ {
++ printf("Some bit didn't change: ");
++ printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
++ e[0],f[0],g[0],h[0],x[0],y[0]);
++ printf("i %d j %d m %d len %d\n", i, j, m, hlen);
++ }
++ if (z==MAXPAIR) goto done;
++ }
++ }
++ }
++ done:
++ if (z < MAXPAIR)
++ {
++ printf("Mix success %2d bytes %2d initvals ",i,m);
++ printf("required %d trials\n", z/2);
++ }
++ }
++ printf("\n");
++}
++
++/* Check for reading beyond the end of the buffer and alignment problems */
++void driver3()
++{
++ uint8_t buf[MAXLEN+20], *b;
++ uint32_t len;
++ uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
++ uint32_t h;
++ uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
++ uint32_t i;
++ uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
++ uint32_t j;
++ uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
++ uint32_t ref,x,y;
++ uint8_t *p;
++
++ printf("Endianness. These lines should all be the same (for values filled in):\n");
++ printf("%.8x %.8x %.8x\n",
++ hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
++ hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
++ hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
++ p = q;
++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
++ p = &qq[1];
++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
++ p = &qqq[2];
++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
++ p = &qqqq[3];
++ printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
++ hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
++ hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
++ hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
++ hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
++ hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
++ hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
++ printf("\n");
++
++ /* check that hashlittle2 and hashlittle produce the same results */
++ i=47; j=0;
++ hashlittle2(q, sizeof(q), &i, &j);
++ if (hashlittle(q, sizeof(q), 47) != i)
++ printf("hashlittle2 and hashlittle mismatch\n");
++
++ /* check that hashword2 and hashword produce the same results */
++ len = 0xdeadbeef;
++ i=47, j=0;
++ hashword2(&len, 1, &i, &j);
++ if (hashword(&len, 1, 47) != i)
++ printf("hashword2 and hashword mismatch %x %x\n",
++ i, hashword(&len, 1, 47));
++
++ /* check hashlittle doesn't read before or after the ends of the string */
++ for (h=0, b=buf+1; h<8; ++h, ++b)
++ {
++ for (i=0; i<MAXLEN; ++i)
++ {
++ len = i;
++ for (j=0; j<i; ++j) *(b+j)=0;
++
++ /* these should all be equal */
++ ref = hashlittle(b, len, (uint32_t)1);
++ *(b+i)=(uint8_t)~0;
++ *(b-1)=(uint8_t)~0;
++ x = hashlittle(b, len, (uint32_t)1);
++ y = hashlittle(b, len, (uint32_t)1);
++ if ((ref != x) || (ref != y))
++ {
++ printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
++ h, i);
++ }
++ }
++ }
++}
++
++/* check for problems with nulls */
++ void driver4()
++{
++ uint8_t buf[1];
++ uint32_t h,i,state[HASHSTATE];
++
++
++ buf[0] = ~0;
++ for (i=0; i<HASHSTATE; ++i) state[i] = 1;
++ printf("These should all be different\n");
++ for (i=0, h=0; i<8; ++i)
++ {
++ h = hashlittle(buf, 0, h);
++ printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
++ }
++}
++
++void driver5()
++{
++ uint32_t b,c;
++ b=0, c=0, hashlittle2("", 0, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */
++ b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */
++ b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */
++ b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */
++ b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */
++ b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b);
++ printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */
++ c = hashlittle("Four score and seven years ago", 30, 0);
++ printf("hash is %.8lx\n", c); /* 17770551 */
++ c = hashlittle("Four score and seven years ago", 30, 1);
++ printf("hash is %.8lx\n", c); /* cd628161 */
++}
++
++
++int main()
++{
++ driver1(); /* test that the key is hashed: used for timings */
++ driver2(); /* test that whole key is hashed thoroughly */
++ driver3(); /* test that nothing but the key is hashed */
++ driver4(); /* test hashing multiple buffers (all buffers are null) */
++ driver5(); /* test the hash against known vectors */
++ return 1;
++}
++
++#endif /* SELF_TEST */
+diff -Nru apt-0.7.20.2/apt-pkg/makefile apt-0.7.20.2+iPhone/apt-pkg/makefile
+--- apt-0.7.20.2/apt-pkg/makefile 2009-04-27 10:23:14.000000000 +0000
++++ apt-0.7.20.2+iPhone/apt-pkg/makefile 2010-02-22 08:34:47.000000000 +0000
+@@ -28,7 +28,7 @@
+ md5.h crc-16.h cdromutl.h strutl.h sptr.h sha1.h sha256.h hashes.h
+
+ # Source code for the core main library
+-SOURCE+= pkgcache.cc version.cc depcache.cc \
++SOURCE+= pkgcache.cc version.cc depcache.cc lookup3.cc \
+ orderlist.cc tagfile.cc sourcelist.cc packagemanager.cc \
+ pkgrecords.cc algorithms.cc acquire.cc\
+ acquire-worker.cc acquire-method.cc init.cc clean.cc \
+diff -Nru apt-0.7.20.2/apt-pkg/makefile.orig apt-0.7.20.2+iPhone/apt-pkg/makefile.orig
+--- apt-0.7.20.2/apt-pkg/makefile.orig 2009-04-27 10:23:14.000000000 +0000
++++ apt-0.7.20.2+iPhone/apt-pkg/makefile.orig 2010-02-22 08:34:47.000000000 +0000
+@@ -28,7 +28,7 @@
+ md5.h crc-16.h cdromutl.h strutl.h sptr.h sha1.h sha256.h hashes.h
+
+ # Source code for the core main library
+-SOURCE+= pkgcache.cc version.cc depcache.cc \
++SOURCE+= pkgcache.cc version.cc depcache.cc lookup3.cc \
+ orderlist.cc tagfile.cc sourcelist.cc packagemanager.cc \
+ pkgrecords.cc algorithms.cc acquire.cc\
+ acquire-worker.cc acquire-method.cc init.cc clean.cc \
+diff -Nru apt-0.7.20.2/apt-pkg/pkgcachegen.cc apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.cc
+--- apt-0.7.20.2/apt-pkg/pkgcachegen.cc 2009-04-27 10:23:14.000000000 +0000
++++ apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.cc 2010-02-22 08:50:54.000000000 +0000
+@@ -35,6 +35,7 @@
+ #include <system.h>
+ /*}}}*/
+ typedef vector<pkgIndexFile *>::iterator FileIterator;
++uint32_t hashlittle( const void *key, size_t length, uint32_t initval);
+
+ // CacheGenerator::pkgCacheGenerator - Constructor /*{{{*/
+ // ---------------------------------------------------------------------
+@@ -635,31 +639,23 @@
+ unsigned long pkgCacheGenerator::WriteUniqString(const char *S,
+ unsigned int Size)
+ {
+- /* We use a very small transient hash table here, this speeds up generation
+- by a fair amount on slower machines */
+- pkgCache::StringItem *&Bucket = UniqHash[(S[0]*5 + S[1]) % _count(UniqHash)];
+- if (Bucket != 0 &&
+- stringcmp(S,S+Size,Cache.StrP + Bucket->String) == 0)
+- return Bucket->String;
++ uint32_t hash = hashlittle(S, Size, 0xdeadbeef);
++
++ /* We use a VERY LARGE INTRANSIENT hash table here, this speeds up generation
++ by AN INSANE amount on ALL machines */
++ pkgCache::StringItem **Bucket2;
++ while (true) {
++ Bucket2 = &UniqHash[hash % _count(UniqHash)];
++ if (*Bucket2 == NULL)
++ break;
++ if (stringcmp(S,S+Size,Cache.StrP + (*Bucket2)->String) == 0)
++ return (*Bucket2)->String;
++ hash += 7;
++ }
+
+- // Search for an insertion point
++ pkgCache::StringItem *&Bucket = *Bucket2;
+ pkgCache::StringItem *I = Cache.StringItemP + Cache.HeaderP->StringList;
+- int Res = 1;
+ map_ptrloc *Last = &Cache.HeaderP->StringList;
+- for (; I != Cache.StringItemP; Last = &I->NextItem,
+- I = Cache.StringItemP + I->NextItem)
+- {
+- Res = stringcmp(S,S+Size,Cache.StrP + I->String);
+- if (Res >= 0)
+- break;
+- }
+-
+- // Match
+- if (Res == 0)
+- {
+- Bucket = I;
+- return I->String;
+- }
+
+ // Get a structure
+ unsigned long Item = Map.Allocate(sizeof(pkgCache::StringItem));
+diff -Nru apt-0.7.20.2/apt-pkg/pkgcachegen.h apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.h
+--- apt-0.7.20.2/apt-pkg/pkgcachegen.h 2009-04-27 10:23:14.000000000 +0000
++++ apt-0.7.20.2+iPhone/apt-pkg/pkgcachegen.h 2010-02-22 08:49:41.000000000 +0000
+@@ -32,7 +32,7 @@
+ {
+ private:
+
+- pkgCache::StringItem *UniqHash[26];
++ pkgCache::StringItem *UniqHash[32768*2];
+
+ public:
+